首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文介绍了用化学共沉淀和在适当温度下煅烧以直接制备YAG-Al2O3纳纳米复合粉体的新方法。XRD结果表明,所得粉体具纯的YAG和α-Al2O3相,因此其化学组成符合配料的组分设计,用本方法制备的25vol%YAG-Al2O3复合粉体经热压烧结,所得的致0密体材料为晶内型纳米复合材料,其抗弯强度达612MPa,断裂韧性为4.54MPam^-1/2,都比单相Al2O3陶瓷有大幅度提高。  相似文献   

2.
非均相沉淀法制备Al2O3-YAG复相陶瓷   总被引:1,自引:0,他引:1  
本文测量了YAG粉体的ξ电位,通过调节pH值获得均匀分散的YAG水悬浮液.采用非均相沉淀方法获得YAG分布均匀的Al-YAG复合粉体.通过热压烧结得到致密烧结体,YAG的加入对烧结温度的影响不大.Al-5vol%YAG复相陶瓷的抗弯强度为485MPa,断裂韧性为4.2MPa·m1/2,均高于单相Al陶瓷,数据的重复性好于球磨混合所制备的样品.通过TEM观察,YAG颗粒均匀分布于整个样品中,表明通过非均相沉淀制粉可以获得YAG颗粒分布均匀的Al-YAG复相陶瓷.  相似文献   

3.
通过对无压烧结、热压烧结和热等静压烧结SIC陶瓷以及热压烧结的SiC粒子补强Al2O3基复相陶瓷(SiCp-Al2O3)和SiC粒子与SiC晶须共同增强的Al2O3基复合材料(SiCp-SiCw-Al2O3)在氮气氛中进行高温氮化处理,成功地实现了这些材料的开口气孔表面裂纹的愈合。研究表明:热等静压氯化工艺可以显著提高SiC和Al2O3陶瓷的抗弯强度,对断裂韧性也有较大的改善作用。对于热等静压烧结SiC陶瓷,在1850℃和200MPa氮气压力下氯化处理1小时后,其抗弯强度和断裂韧性分别由582MPa和5.7MPa·m1/2提高到907MPa和8.4MPa·m1/2;对于热压烧结的SiCp-Al2O3复相陶瓷和SiCp-SiCw-Al2O3复合材料,在1700℃和150MPa氮气压力下氮化处理1小时后,其室温抗弯强度分别由460和705MPa提高到895和1033MPa。  相似文献   

4.
本文采用热压工艺制备TiC和Al_2O_3共同补强Y-TZP基复相陶瓷,研究了复相陶瓷的相组成、力学性能及显微结构.发现复相陶瓷的高温强度得到显著提高,1000℃时,组成为30vol%TiC-(25vol%Al2O3/1.8Y-TZP)复相陶瓷抗弯强度高达614MPa.TiC颗粒补强机制在高温下发挥了重要作用.  相似文献   

5.
共沉淀法制备Al2O3-YAG复相陶瓷及其显微结构研究   总被引:2,自引:0,他引:2  
用共沉淀法制备了Al2O3-YAG复合粉体,YAG的结晶温度在1000℃左右,共沉淀法制备的Al2O3-YAG复合粉体经1550℃热压烧结,获得致密烧结体,YAG的加入量对烧结温度的影响不大。Al2O3-5vol%YAG复合材料的抗弯强度为604MPa,断裂韧性为5.0MPa.m%^1/2;Al2O3-25vol%YAG复合材料的抗弯强度为611MPa,断裂专访性为4.5MPa.M^1/2。所有这些数据都高于单相Al2O3陶瓷的力性能,说明YAG的加入有利于Al2O3陶瓷力学性能的提高。通过显微结构观察发现:大的YAG颗粒位于Al2O3晶界上,小的YAG颗粒位于Al2O3晶粒内。在Al2O3-5vol%YAG复合材料中,许多小的白色区域存在于Al2O3晶粒内,这可能和较低的Y2O3含量有关。  相似文献   

6.
本文采用热压工艺制备TiC和Al2O3共同补强Y-TZP基复相陶瓷,研究了复相陶瓷的相组成。力学性能及显微结构,发现复相陶瓷的高温强度得到显著提高,1000℃时,组成为30vol%TiC-(25vol%,Al2O3/1.8Y-TZP)复相陶冷饮 抗弯强度高达614MPa,TiC颗粒补强机制在高温下发挥了重要作用。  相似文献   

7.
常压烧结ZTM/Al2O3复合陶瓷的力学性能   总被引:3,自引:0,他引:3  
采用干法成型、常压烧结工艺制得致密的ZTM/Al2O3复合陶瓷材料。通过引入大颗粒的氧化铝,使ZTM陶瓷(氧化锆增韧莫来石陶瓷)的力学性能有明显提高。组成20Vol.%Al2O3-20Vol.%ZrO2-mullite陶瓷材料,其断裂韧性为6.06MPa·m^1/2,抗弯强度为403MPa。实验结果表明:Al2O3的弥散强化和ZrO2的相变增韧及微裂纹增韧是ZTM/Al2O3陶瓷的主要增韧机理。  相似文献   

8.
热压烧结TiB2陶瓷的显微结构和力学性能研究   总被引:4,自引:1,他引:3  
以Y2O3-Al2O3为烧结助剂,通过热压制备了TiB2陶瓷,研究了烧结温度,烧结时间和晶化处理对材料的显微结构和力学性能的影响。实验结果表明,随着烧结温度的升高,烧结体失重增加,其抗弯强度和断裂韧性降低,烧结时间延长,其显微结构的均匀性降低,对力学性能不利。晶粒直径对TiB2陶瓷的力学性能有重要影响,晶化处理能够导致晶界析出YAG相,从而提高TiB2陶瓷的高温抗弯强度。  相似文献   

9.
本文以SiC板粒、ZrOCl2-8H2O、AlCl3和Y(MO)3为原料,利用共沉淀和热压烧结工艺,制备SiC板粒/Y-TZP和(含Al2O3)SiC板粒/Y-TZP复合材料.测试了材料的室温和高温力学性能.研究了添加Al2O3对SiC板粒/Y-TZO复合材料的影响.结果表明,SiC板粒/Y-TZP复合材料与Y-TZP陶瓷相比,其室温强度和韧性出现明显下降,高温强度也没有改善;而在SiC板粒与Y-TZP复合的基础上,添加Al2O3可明显提高材料的强度和断裂韧性,同时,材料的高温强度也获得显著改善.  相似文献   

10.
晶内型Al2O3—SiC纳米复合陶瓷的制备   总被引:36,自引:5,他引:31  
研究了沉淀法制备Al2O3-SiC纳米复合陶瓷的工艺过程,利用Al2O3从γ相到α相的蠕虫状生长过程,使大部分纳米SiC颗粒位于Al2O3晶粒内,用沉淀法制得的、含有5vol%SiC的Al2O3-SiC纳米复合陶瓷,其强度为467MPa,韧性为4.7MPa.m^1/2,与一般的Al2O3陶瓷相比有较大的提高,显示了沉淀法制备Al2O3-SiC纳米复合陶瓷的优点。  相似文献   

11.
YAG-Al2O3纳米复合材料的制备和力学性能   总被引:1,自引:0,他引:1  
本文介绍用化学共沉淀和在适当温度下煅烧以直接制备YAG-Al2 O3纳米复合粉体的新方法.XRD结果表明,所得粉体具纯的YAG和α-Al2 O3相,因此其化学组成符合配料的组分设计.用本方法制备的25vol%YAG-Al2 O3复合粉体经热压烧结,所得的致密体材料为晶内型纳米复合材料,其抗弯强度达612MPa,断裂韧性为4.54MPa.m-1/2,都比单相Al2 O 3陶瓷有大幅度提高.  相似文献   

12.
Ceramic tapes, containing Al2O3-25 wt pct TiB2(B) and Al2O3-25 wt pct nano-TiC (c), have been obtained by tape casting process. Numerous tapes (about 60~80 tapes) were prepared by stacking in turn the composition (B) and (C), laminating under 10 MPa pressure, eliminating the solvent and burning out the polymer additives. The final green bodies were hot pressed at 1750℃ and 30 MPa. The composite has a bending strength of 568 MPa and a fracture toughness of 5.8 M Pa·m1/2. SEM analysis exhibits that Al2O3 particle growth was inhibited by TiC particles in C. but TiB2 particles could not hinder Al2O3 growth in B. The curves of GTA indicates that all organic additives could be removed completely above 600℃  相似文献   

13.
采用一种具有芯-壳结构的复合纳米纤维增强铝合金复合材料,可以在提高抗拉强度的同时增加塑性。通过真空热压烧结技术制备了Al2O3@Y3Al5O12复合纳米短纤维增强2024铝合金复合材料。研究了纤维添加质量分数对复合材料致密度、硬度、抗拉强度及延伸率的影响;并探究了芯-壳结构在复合材料增韧中的作用。结果表明:Al2O3@Y3Al5O12纳米短纤维具有良好的分散性,在超声分散及机械搅拌混粉后均匀吸附在铝合金颗粒表面,无分层及团聚现象;经热压烧结后,Al2O3@Y3Al5O12纳米短纤维以短纤维形态均匀分散在铝合金基体内,少量添加Al2O3@Y3Al5O12纳米短纤维起到了桥联和孔洞填充作用,使复合材料致密度和硬度提高;添加质量分数为1wt%时,抗拉强度和延伸率取得最大值,由铝合金的249.3 MPa、2.9%增加到299.1 MPa、4.3%。Al2O3@Y3Al5O12纳米短纤维的添加可以细化晶粒,阻碍裂纹扩展,且在拔出/断过程中Al2O3@Y3Al5O12纳米短纤维芯-壳结构的塑性变形起到了增强增韧作用。   相似文献   

14.
在预制坯中加入TiO_2粉末,利用挤压铸造法制备Al_2O_3颗粒增强1065钢基复合材料,研究TiO_2对复合材料组织与力学性能的影响。结果表明:TiO_2使基体与Al_2O_3的结合界面形成了TiO_2、Al_2TiO_5界面层;添加TiO_2的复合材料硬度和三点弯曲强度分别为39.0HRC,743.94MPa,比未添加TiO_2的复合材料分别提高了10.0%,26.4%;断口扫描表明,添加TiO_2的复合材料界面结合良好无裂纹,Al_2O_3颗粒表现为穿晶断裂。说明加入的TiO_2改善了Al_2O_(3p)/钢基复合材料界面结合强度,提高了复合材料力学性能。  相似文献   

15.
在AZTM15(2Y)中加入Al2O3粒子,可以改善材料的微观结构,使ZTM15(2Y)材料的室温力学性能提高,尤其是材料的断裂韧性,由4.0MPalm1/2增至7.8MP.^1/2,其主要贡献源于微鲜明纹增韧,但由于Al2O3粒子的引入,增加了ZTM15(2Y)基体中微裂纹的密度,所以不能有效抑制TM15(2Y)材料低温时效处理力学性能下降现象,相反,将另速材料力学性能的退化。  相似文献   

16.
分别选用2024、5056、6061和7075铝合金,采用颗粒级配相同的碳化硼预制体(20%2μm和80%38μm)为增强体,采用无压浸渗法制备4种高体份B4C/Al复合材料(分别对应标记为2M、5M、6M和7M),研究基体合金成分对复合材料的物相组成、微观组织和力学性能的影响。结果表明,4种复合材料均含有A1、B4C、Al3BC、AlB2和富Fe-Mn相,除此之外,2M、5M和7M复合材料还含有Al B10。4种复合材料小颗粒碳化硼聚集区均发生了剧烈的界面反应,生成Al3BC和Al B2。Al B10主要分布于2M、5M和7M复合材料的大颗粒碳化硼周围,并与大颗粒碳化硼连成一体。4种复合材料的洛氏硬度从大到小顺序为2M(45. 7)、7M(43. 1)、5M(41. 8)和6M(40. 02)。2M、5M和7M复合材料内部发现有孔洞存在,导致复合材料弯曲强度和应力均较低。这种效应在7M复合材料中最为明显,其弯曲强度仅为296 MPa。6M复合材料弯曲强度和应变最高,分别为425 MPa和0. 183%,这主要是因为在6M复合材料中,不含Al B10相且残余铝合金相对含量较高。  相似文献   

17.
研究了Si3N4粉末粒度分析发现相组成,AlN粉末的粒度及分阶段烧工艺对气压烧结α/βsialon的致密化,产物相组成和力学性能的影响,采用三阶段保温烧结(1700℃,1h,1800℃,1h及1950℃,15h)减少了Si3N4与液相在高温反应促进了材料致密,适当的烧结工艺下及用适当的埋粉,细AlN原料有利于材料致密。细Si3N4原料(0.3μm)中氧杂质增加导致复合材料中α-sialons相减少  相似文献   

18.
Al/Al2O3 composites of different ratios were hot-press sintered at 575 similar to 640℃ under a pressure of 30 MPa for 2 h in a vacuum furnace. It was found that the relative density of the Al/Al2O3 composites could be increased evidently with the rise of sinter temperature. No reaction occurred between Al and Al2O3 at the sinter temperatures. Under 640℃-30 MPa-2 h experimental condition, Al/Al2O3 system FGM was successfully fabricated, and its density range changed quasi-continuously from 2.887x10(3) kg/m(3) to 3.1909x10(3) kg/m3 within the middle 1.0 mm thickness range.  相似文献   

19.
非均相沉淀法制备Al2O3-YAG复相陶瓷   总被引:2,自引:0,他引:2  
本文测量了YAG粉体的ζ电位,通过调节PH值获得均匀分散的YAG水悬浮液。采用非均相沉淀方法获得了YAG分布均匀的Al2O3-YAG复合粉体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号