共查询到20条相似文献,搜索用时 0 毫秒
1.
Hong‐Li Zhu Ji‐He Wei Guo‐Min Shi Jie‐Hui Shu Qing‐Yuan Jiang He‐Bing Chi 《国际钢铁研究》2007,78(4):305-310
Mathematical modeling of stainless steelmaking in an AOD (argon‐oxygen decarburisation) converter with side and top combined blowing has been preliminarily investigated. The actual situations of the side and top combined blowing AOD process were analysed. A mathematical model for the whole refining process of stainless steel has been proposed and developed. The model is based on the assumption that one part of the oxygen blown through a top lance reacts with CO escaping from the bath, another part of the oxygen oxidizes the elements in the molten steel droplets splashed by the oxygen jet, and the remaining oxygen penetrates and dissolves into the molten steel through the pit stroked by the jet. All the oxygen entering into the bath oxidizes C, Cr, Si, and Mn dissolved in the steel and also the Fe of the steel melt, but the FeO generated is also an oxidant of C, Cr, Si, and Mn in the steel. During the process, all possible oxidation‐reduction reactions occur simultaneously and reach their equilibria, respectively their combined equilibrium, in competition at the liquid/bubble and liquid/slag interfaces. In the simple side blowing after the top blowing operation is finished, the possible reactions take place simultaneously and reach a combined equilibrium in competition at the liquid/bubble interfaces. The overall decarburization rate in the refining process is the sum of the contributions of both the top and side blowing processes. It is also assumed that at high carbon concentrations, the oxidation rates of elements are mainly dependent upon the supplied oxygen rate, and at low carbon contents, the rate of decarburisation is primarily related to the mass transfer of carbon from the molten steel bulk to the interface. It is further assumed that the non‐reacting oxygen blown into the bath does not accumulate in the steel and will escape from the bath and react with CO in the atmosphere above the bath. The study presents calculations of the refining rate and the mass and heat balances of the system for the whole process. Additionally, the influences of the operating factors, including addition of slag materials, scrap, and alloy agents, the non‐isothermal conditions, the changes in the amounts of metal and slag during the whole refining process, and others have all been considered. 相似文献
2.
The mathematical model developed for the molten steel flow in the combined side and top blowing AOD refining process of stainless steel has been used to compute and analyze the flow fields of the liquid phases in the baths of the 120 t AOD converter and its water model unit with a 1/4 linear scale. The influence of the side tuyere number and the angle between each tuyere on the flows has been examined. The results demonstrate that the mathematical model can quite reliably and well model and predict the fluid flow in an AOD bath with the combined blowing. The liquid flow in an AOD converter bath with the combined blowing is resulted from the gas side blowing streams under the influence of a gas top blowing jet. The streams play a governing role on it; and the liquid in the whole bath is in active agitation and circulatory motion during the gas blowing process. The gas jet from the top lance does not change the essential features of the gas stirring and liquid flow in the bath, but can make the local flow pattern of the bath liquid obviously vary and its turbulent kinetic energy enhance. The changes in the tuyere position and number have similarly not altered the basic characteristics and patterns of the gas agitation and liquid flow and turbulent kinetic energy distribution in the bath. At a given tuyere number and gas side blowing rate or a given angular separation between each tuyere and gas side blowing rate, however, the variation of the angle between each tuyere or the tuyere number can locally change them. Using 6 tuyeres with 27° can reach the more uniform flow field and turbulent energy distribution of the liquid in the bath than taking 7 tuyeres with 18° or 22.5° and 6 tuyeres with 22.5°. 相似文献
3.
Ji‐He Wei Hong‐Li Zhu Sen‐Long Yan Xin‐Chao Wang Jin‐Chang Ma Guo‐Min Shi Qing‐Yan Jiang He‐Bing Chi Li‐Bing Che Kai Zhang 《国际钢铁研究》2005,76(5):362-371
The fluid mixing characteristics in the bath during the side and top combined blowing AOD (argon‐oxygen decarburization) refining process of stainless steel were preliminarily investigated on a water model unit of a 120 t AOD converter. The geometric similarity ratio between the model and its prototype (including the side tuyeres and the top lances) was 1:4. On the basis of the theoretical calculations for the parameters of the gas streams in the side tuyeres and the top lances, the gas blowing rates used for the model were more reasonably determined. The influence of the tuyere number and position arrangement, and the gas flow rates for side and top blowing on the characteristics was examined. The results demonstrated that the liquid in the bath underwent vigorous circulatory motion during gas blowing, without obvious dead zone in the bath, resulting in a high mixing effectiveness. The gas flow rate of the main tuyere had a governing role on the characteristics, a suitable increase in the gas flow rate of the subtuyere could improve mixing efficiency, and the gas jet from the top lance made the mixing time prolong. Corresponding to the oxygen top blowing rate specified by the technology, a roughly equivalent and good mixing effectiveness could be reached by using six side tuyeres with an angle of 27 degrees between each tuyere, and five side tuyeres with an angular separation of 22.5 or 27 degrees between each tuyere. The relationships of the mixing time with the gas blowing rates of main‐tuyeres and sub‐tuyeres and top lance, the angle between each tuyere, and the tuyere number were evaluated. 相似文献
4.
The mass transfer characteristics in a steel bath during the AOD refining process with the conditions of combined side and top blowing were investigated. The experiments were conducted on a water model unit of 1/4 linear scale for a 120‐t combined side and top blowing AOD converter. Sodium chloride powder of analytical purity was employed as the flux for blowing, and the mass transfer coefficient of solute (NaCI) in the bath was determined under the conditions of the AOD process. The effects of the gas flow rates of side and top blowing processes, the position arrangement and number of side tuyeres, the powdered flux particle (bubble) size and others on the characteristics were examined. The results indicated that, under the conditions of the present work, the mass transfer coefficient of solute in the bath liquid is in the range of (7.31×10?5‐3.84×10?4) m/s. The coefficient increases non‐linearly with increasing angle between each tuyere, for the simple side blowing process at a given side tuyere number and gas side blowing rate. The gas flow rate of the main tuyere has a governing influence on the characteristics, and the gas jet from the top lance decreases the mass transfer rate, the relevant coefficient being smaller than that for a simple side blowing. Also, in the range of particle (bubble) size used in the present work and with all other factors being constant, raising particle (bubble) size increases the coefficient. Excessively fine powder particle (bubble) sizes are not advantageous to strengthening the mass transfer. With the oxygen top blowing rate practiced in the industrial technology, the side tuyere arrangements of 7 and 6 tuyeres with an angular separation of 22.5° and 27° between each tuyere, as well as 5 tuyeres with an angle of 22.5° between each tuyere can provide a larger mass transfer rate in the bath. Considering the relative velocity of the particles to the liquid, the energy dissipation caused by the fluctuation in the velocity of the liquid in turbulent flow and regarding the mass transfer as that between a rigid bubble and molten steel, the related dimensionless relationships for the coefficient were obtained. 相似文献
5.
6.
Considering that the liquid flow field under the conditions of the combined side and top blowing would be a combined result from the common action of the side blowing gas streams and a gas top blowing jet, as the first attempt, the three‐dimensional mathematical models for the flows of molten steel in an AOD converter bath during the simple side and top blowing processes have been proposed and developed, respectively. And the mathematical model of the flow in the bath during the combined blowing AOD refining process of stainless steel has been given by the composition and superposition of the two models. In the composed model, the gas‐liquid two‐phase flow is described and treated in terms of the two‐fluid (Eulerian‐Eulerian) model. The especially modified two‐equation k?ε model for the turbulence in the liquid phase is employed. And, the surface of the sunken pit formed by impact of the gas jet blown from a top lance at the central location of the bath liquid surface is regarded as a revolution paraboloid. The related details of the composed model are shown. 相似文献
7.
8.
9.
基于气液双流体模型和湍流的修正k-ε模型,考虑了多股气流侧吹操作对熔池流场的影响,以及AOD熔池内气液两相流的行为和两相间的动量传输,建立了AOD多股气流侧吹精炼过程中熔池内流体流动的数学模型,并对宝钢股份不锈钢事业部120 tAOD原型和线尺寸为其1/4的水模型熔池内流体的流动作了模拟,结果表明,确实可以采用双流体模型来模拟AOD精炼过程中熔池内流体的流动;用该模型计算的结果表明,整个熔池流体处于活泼的搅拌和循环运动状态。 相似文献
10.
The fluid flow in a bath in combined top and bottom blowing vacuum‐oxygen decarburization (VOD) refining process of stainless steel has numerically been simulated. The three‐dimensional mathematical model used is essentially based on that proposed in our previous work for the flow in combined side and top blowing argon‐oxygen decarburization (AOD) process, but considering the influence of reduced ambient pressure. Applying it to the flow in the bath of a 120 t VOD vessel under the refining conditions, the results present that the model can fairly well simulate and estimate the flow phenomena. The flow pattern of molten steel in the bath with the combined blowing is a composite result under the common action of the jets from a three‐hole Laval top lance and gas bottom blowing streams. The jets have a leading role on it; the molten steel in the whole bath is in vigorous stirring and circulatory motion during the blowing process. The streams do not alter the basic features of the gas agitation and liquid flow, but can evidently change the local flow pattern of the liquid and increase its turbulent kinetic energy to a certain extent. The flow field and turbulent kinetic energy distribution in the combined blowing with three tuyeres are more uniform than those in the blowing with double tuyeres. Increasing properly the tuyere eccentricities is of advantage for improving the velocity and turbulent kinetic energy distributions, the stirring and mixing result in the practical VOD refining process. 相似文献
11.
12.
Mika P. Järvinen Sauli Pisilä Aki Kärnä Topi Ikäheimonen Pentti Kupari Timo Fabritius 《国际钢铁研究》2011,82(6):638-649
This paper presents a new simulation model for the AOD process that takes the local variations into account but is still computationally efficient. The new idea here was to model AOD reactor as a combination of a plug flow reactor for the plume zone and a continuously stirred tank reactor (CSTR) for the bath and surface slag. This approach adopted has many advantages compared with the previous models. At first, it offers an effective method for considering the locally varying conditions as the gas bubbles rise in the plume. The model can be built computationally very effective compared to CFD due to significantly smaller amount of variables. The validation of the model is also easier as it has features that can be experimentally determined. The model is based on the simultaneous solution of conservation equations of mass, species and energy in all the vertical cells of the plug flow reactor, and a single volume in bath and surface slag. A novel method was developed and used for solving the rates in a mass transfer controlled multi‐component reaction system. In this Part I of this paper, the model is presented and its features discussed by few illustrative examples. In the following Part II, the model is broadly validated with new full scale industrial AOD process measurements for carbon release rate, melt composition, slag composition and bath temperature rise during final stages of carbon removal. 相似文献
13.
太钢新改造的3座AOD转炉投产及其先进的工艺控制技术 总被引:3,自引:0,他引:3
太钢3座40tAOD转炉改造后扩容到45t并于2004年4月成功投产,主要采用两步法生产铁素体和奥氏体不锈钢。介绍了该项目的主要特点以及奥钢联AOD技术特点。 相似文献
14.
A high‐temperature thermodynamics model has been coupled with a fundamental mathematical model describing the fluid flow, where boundary conditions were chosen based on data for an industrial AOD converter. Using this model, the effect of both slag phases (a liquid part and a solid part) on the decarburization was studied. More specifically, the separation of chromium oxide to liquid slag as well as the effect of the amount of rigid top slag (solid)on the decarburization was investigated. The liquid slag was considered with respect to the uptake of chromium oxide, while the rigid top slag was only considered with respect to the increase of the metallostatic pressure in the steel melt. The results suggest that separation of chromium oxide to liquid slag results in a decreased decarburization rate. The same conclusion can be drawn with respect to the amount of solid top slag. 相似文献
15.
16.
17.
18.
A three‐dimensional mathematical model for the molten steel flow during the RH refining process has been applied to the circulatory flow processes in both a practical RH degasser and its water model unit. The model was presented earlier [1] and one of its characteristics is that ladle, snorkels and vacuum vessel are regarded as a whole. Using this model, the fluid flow field and the gas holdups of liquid phases and others have been computed respectively for a 90 t RH degasser and its water model unit with a 1/5 linear scale. The results show that the mathematical model can properly describe the flow pattern of molten steel during the refining process in an RH degasser. Except in the area close to the liquid's free surface and in the zone between the two snorkels in the ladle, a strong mixing of the molten steel occurs, especially in the vacuum vessel. However, there is a boundary layer between the descending liquid stream from the down‐snorkel and its surrounding liquid, which is a typical liquid‐liquid two‐phase flow, and the molten steel in the ladle is not in a perfect mixing state. The lifting gas blown is ascending mostly near the up‐snorkel wall, which is more obvious under the conditions of a practical RH degasser, and the flow pattern of the bubbles and molten steel in the up‐snorkel is closer to an annular flow. The calculated circulation rates for the water model unit at different lifting gas rates are in good agreement with experimentally determined values. 相似文献
19.