首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to precisely control the nano‐scale (Nb,Ti)C precipitate in hot‐rolled 780 MPa Nb–Ti microalloying C–Mn steel, isothermal precipitation behavior of nano‐scale (Nb,Ti)C precipitate in the ultra‐high strength steel was investigated by the thermal simulation experiments. The results indicated that defects of deformed supercooled austenite became the preferential nucleation sites of nano‐scale (Nb,Ti)C precipitate and ferrite, so there was a competition mechanism for austenitic defects between ferritic transformation and precipitate nucleation. Bainitic transformation could effectively freeze austenitic defects, and additional defects are formed because of volume expansion in bainitic transformation process, so bainitic transformation could promote precipitate nucleation. However, precipitate was impacted by both nucleation driving force and atom diffusibility, so the peak temperature of nano‐scale (Nb,Ti)C precipitate was 550°C. On the basis of the above theoretical results, hot rolling experiments results showed that when the coiling temperature was 550°C, the yield strength and tensile strength were 710 and 790 MPa, respectively, and the microstructure of hot‐rolled steels was mainly bainitic ferrite, and a large number of <10 nm nano‐scale (Nb,Ti)C precipitates were obtained. Precipitation strengthening contribution to reached 325 MPa.  相似文献   

3.
4.
A Confocal Scanning Laser Microscope equipped with a gold image furnace was used to directly observe the precipitation of MnS during solidification of high sulphur steels under isothermal conditions in the temperature region 1440 to 1480°C on the free surface of the steel melt. For the case of Al‐killed steels, below 1480°C MnS particles were found to precipitate with Fe forming simultaneously around them. This MnS containing structure continued to grow rapidly (264 μm/s) as a surface film. The film gradually changed, as the level of S in the melt decreased, into a eutectic structure (with lamella spacing of 2 μm) as predicted by thermodynamics. In Si‐ killed steels there was significantly lower tendency to form MnS both in terms of time until precipitation occurred and growth rate.  相似文献   

5.
For the purpose of achieving the reasonable rolling technology of 780 MPa hot‐rolled Nb‐Ti combined ultra‐high strength steel, the effect of deformation and microalloy elements Nb and Ti on phase transformation behaviors was investigated by thermal simulation experiment. The results indicated: the deformation promoted ferritic transformation; due to the carbon content of the experimental steel was lower (<0.12% wt), the deformation indirectly impacted perlitic transformation through promoting ferritic transformation; the effect of the deformation on bainitic transformation was subject to condition whether proeutectoid ferrite precipitated before bainitic transformation. At low cooling rate of 0.5 °C/s, Nb and Ti promote transformation process γ → α, but that not good for refining the ferrite grain; at high cooling rate of 25 °C/s, Nb and Ti to a certain extent promote bainitic transformation. The recrystallization stop temperature of experimental steel was greater than 1000 °C, and phase transformation point Ar3 was 764 °C. In order to obtain the fully bainite microstructure in the practical rolling process, the cooling rate should be controlled above 15 °C/s, the start finish rolling temperature between 950–980 °C, the finishing temperature between 830–850 °C, the coiling temperature between 450–550 °C.  相似文献   

6.
以ZnSO4为原料,采用氨水和NH4HCO3作为沉淀剂,首先ZnSO4和一定量氨水反应得到Zn(OH)2晶核,再与NH4HCO3反应包覆沉淀Zn5(OH)6(CO3)2,制得的复合前驱体经烘干,在450℃下煅烧90分钟得到超细ZnO粉体。利用正交实验方法优化得到较佳的沉淀工艺条件。  相似文献   

7.
8.
根据凝固过程中溶质元素偏析和扩散的基本规律,建立了凝固过程中氧化钛的长大模型。计算结果表明,冷却速率对凝固过程中氧化钛的析出和长大有重要影响:冷却速率越小,氧化钛长得越大。凝固前初始氧化钛越小,在凝固过程中氧化钛越容易长大。此外,可以根据冷却速率和凝固后氧化钛的尺寸判断氧化钛是凝固前形成的一次氧化物还是凝固过程中产生的二次氧化物。  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号