首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stability of retained austenite and the kinetics of the strain‐induced martensitic transformation in micro‐alloyed TRIP‐aided steel were obtained from interrupted tensile tests and saturation magnetization measurements. Tensile tests with single specimens and at variable temperature were carried out to determine the influence of the micro‐alloying on the Msσ temperature of the retained austenite. Although model calculations show that the addition of the micro‐alloying elements influences a number of stabilizing factors, the results indicate that the stability of retained austenite in the micro‐alloyed TRIP‐aided steels is not significantly influenced by the micro‐alloying. The kinetics of the strain‐induced martensitic transformation was also not significantly influenced by addition of the micro‐alloying elements. The addition of micro‐alloying elements slows down the autocatalytic propagation of the strain‐induced martensite due to the increase of the yield strength of retained austenite. The lower uniform elongation of micro‐alloyed TRIP‐aided steel is very likely due to the presence of numerous precipitates in the microstructure and the pronounced ferrite grain size refinement.  相似文献   

2.
In this study the influence of Mn on galvannealed coatings of 1.7% Mn‐1.5% Al TRIP‐ and 23% Mn X‐IP®‐steels was investigated. It is shown that the external selective oxides like Mn, Al and Si of the TRIP steel which occur after annealing at 800 °C for 60 s at a dew point (DP) of ‐25 °C (5% H2) hamper the Fe/Zn‐reaction during subsequent galvannealing. Preoxidation was beneficially utilized to increase the surface‐reactivity of the TRIP steel under the same dew point conditions. The influence of Mn on the steel alloy was investigated by using a 23% Mn containing X‐IP®‐steel which was bright annealed at 1100 °C for 60 s at DP ‐50 °C (5% H2) to obtain a mainly oxide free surface prior to hot dip galvanizing (hdg) and subsequent galvannealing. As well known from the literature Mn alloyed to the liquid zinc melt stabilizes δ‐phase at lower temperatures by participating in the Fe‐Zn‐phase reactions, it was expected that the metallic Mn of the X‐IP®‐steel increases the Fe/Zn‐reactivity in the same manner. The approximation of the effective diffusion coefficient (Deff(Fe)) during galvannealing was found to be higher than compared to a low alloyed steel reference. Contrary to the expectation no increased Fe/Zn‐reaction was found by microscopic investigations. Residual η‐ and ζ‐phase fractions prove a hampered Fe/Zn‐reaction. As explanation for the observed hampered Fe/Zn‐reaction the lower Fe‐content of the high‐Mn‐alloyed X‐IP®‐steel was suggested as the dominating factor for galvannealing.  相似文献   

3.
The effect of additions of Nb, Al and Mo to Fe‐C‐Mn‐Si TRIP steel on the final microstructure and mechanical properties after simulated thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X‐ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The results have shown that the final microstructures of thermomechanically processed TRIP steels comprise ~ 50 % of polygonal ferrite, 7 ‐12 % of retained austenite, non‐carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure‐property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C‐Si‐Mn‐Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb‐Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C‐Si‐Mn‐Nb steel leads to a good combination of strength (~ 940 MPa) and elongation (~ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ~7 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb‐Mo‐Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb‐Mo‐Al steel appears to be more granular than in the Nb‐Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.  相似文献   

4.
For demanding applications high steel cleanliness and strictly controlled inclusions are required. Primary inclusions are formed during steel treatments in the ladle. Most of these are removed to the ladle slag or on the lining. However, the rest of the inclusions still remain through the successive process stages, and additionally new inclusions are formed during casting and solidification due to decreasing thermodynamic solubility of oxygen in the steel at lower temperatures, reactions with surrounding slag, refractory materials and eventual contact with air. Inclusions formation and transformation are simulated by thermodynamic calculations in the steel/inclusions/slag system taking into account the solidification phenomena. In this paper inclusions in Si/Mn‐deoxidised steel and Al‐deoxidised Ca‐treated steels are contributed. Calculations are compared with experimental results from steel plants.  相似文献   

5.
In order to achieve appropriate mechanical properties, new high strength steels aimed for the car industry have to be alloyed with solution strengthening elements. The annealing treatment undergone on cold rolled sheets induces the selective oxidation of alloying elements such as Al, Mn, Si and Cr. The formed oxides exhibit a poor wetting by the Zn bath during hot dip galvanising, thus deteriorating the properties of the zinc coating. While surface‐segregating elements get oxidised, they interact with each other through the formation of spinels and/or mixed oxides during annealing and oxides which have a deleterious effect on wetting can be formed. The formation of (Mn, B) oxide was observed on alloys containing even very small amounts of B and this oxide is almost not wetted at all by Zn. Boron is added to interstitial‐free steels to improve the cold work embrittlement, by replacing phosphorus at the grain boundaries. In this paper, the selective oxidation of steels with and without B, in 5 vol. % H2‐N2 atmosphere at 820°C and different dew points was investigated. We found a very strong effect of segregation and oxidation of B on Si and S segregation and oxidation behaviour.  相似文献   

6.
Great progresses in steel cleanliness have been attained during the last decades. In the measures of oxygen the lowest levels are approaching 5 ppm in Otot i.e. close to the thermodynamic limit of Al deoxidation. As the thermodynamics of the reaction system is firmly anchored to the steel chemistry and thus to the properties of steel and the final product, it is useful to examine the thermodynamic constraints for selected steels in the refining and casting processes. In most steels Al‐O equilibrium determines the limit of deoxidation. Calculations by applying thermodynamic software showed that in selected “common” steels the equilibrium oxygen content varied from below 5 ppm up to 30 ppm or higher depending on the aluminium content, interaction effect of other alloying elements and temperature. For lower oxygen content there are several possibilities. The first one is to use stronger deoxidizing additions like Ca, Zr, Ce etc. However, they can be problematic as substitutes as they produce inclusions which influence steel properties. The second way is to intensify the deoxidizing power of certain elements e.g. Si by bringing the steel in intimate contact with a proper slag with low SiO2 activity in ladle treatment with violent stirring. In the calculation example it was possible to decrease oxygen content from 30 ppm to the level below 10 ppm in C/Mn/Si steel at very low Al level. The third potential but unused process is vacuum deoxidation especially for medium and high carbon steels. Equilibrium oxygen contents below 1 ppm are thermodynamically easily attainable. But in practice the vacuum treatment should be designed to intensify the carbon‐oxygen reaction on the top surface of the stirred steel liquid. Also the eventual reactions with refractory materials should be suppressed.  相似文献   

7.
The microstructures, mechanical properties and abrasive wear behaviour of five kinds of Si‐Mn‐Cr‐B cast steels were studied. The steels investigated contained X wt.% C with X= 0.15, 0.25, 0.35, 0.45, 0.55, 2.5 wt.% Si, 2.5 wt.% Mn, 0.5 wt.% Cr, 0.004 wt.%B . The results showed that the Ac1temperatures increased and Ac3 and Ms temperatures decreased with increasing carbon concentration. From the continuous cooling transformation (CCT) curves, it was discovered that the incubation period of pearlitic transformation was prolonged and the transformation curves of pearlite and bainite were separated significantly with rising carbon concentration. At lower carbon concentration, the normalized structure of Si‐Mn‐Cr‐B cast steel consisted mainly of granular bainite and M‐A islands. The normalized microstructures of the cast steel changed from granular bainite gradually to needle‐like bainite, upper bainite, and lower bainite with rising carbon concentration. The tensile strength and hardness of Si‐Mn‐Cr‐B cast steel increased and impact and fracture toughness decreased with increasing carbon content. The wear testing results showed that the wear resistance of Si‐Mn‐Cr‐B cast steel improved with higher carbon content but was obviously unchanged beyond the carbon concentration of 0.45%. The best balance of properties of Si‐Mn‐Cr‐B cast steel is obtained at the carbon concentration range of 0.35 ‐ 0.45%C.  相似文献   

8.
The influence of the micro alloying elements B, Ti and Nb on the recrystallization texture and mechanical properties of iron aluminium light‐weight steels, particularly with reference to their improved deep drawing properties was investigated. Depending on the combination of the alloying elements the microstructures of the investigated micro alloyed Fe‐6Al steels are influenced by grain refinement. Likewise, variable combinations of micro alloying elements differently affect the texture. Generally, the mechanical properties are improved. However, small amounts of B, Ti and Nb cause superior deep drawing and stretch forming properties of these iron aluminium light‐weight steels The microstructures of various micro alloyed cold rolled Fe‐6Al steel sheets were evaluated by optical microscopy, scanning electron microscopy (SEM) inclusively EDAX and X‐ray diffraction. Texture measurements were performed using a goniometer with a closed Eulerian cradle and analysed by ODF calculations. Tensile tests were carried out at room temperature and 200 °C, respectively. The deep drawing behaviour was determined by performing cupping tests and digitalised strain analysis.  相似文献   

9.
The effect of cerium on inclusions and solidification structure of a low-nickel Si–Mn-killed stainless steel is studied using laboratory experiments. When the cerium content in steel increased from 0 to 250 ppm, modification sequence of inclusions is Si–Mn(–Al)–O and MnS → Ce–Si–Mn–O–S → Ce(–Si)–O–S → CeS and CeC2. The number density and area fraction of inclusion first decrease with the increase in the cerium content and then increase due to the formation of CeC2 inclusions when the cerium content is bigger than 150 ppm, which is precipitated in solid steel during solidification. When the cerium content increases from 0 to 250 ppm, the fraction of equiaxed grain zones of steel ingot first increases and reaches a maximum value when the cerium content is 54 ppm; then the fraction of equiaxed grain zones decreases with the increase of the cerium content. 2D lattice misfit calculations are performed and it is found that there are no heterogeneous nucleation cores in the steel without cerium during solidification. For the steel with cerium, Ce4.67Si3O13, Ce2O2S, and CeS inclusions act as heterogeneous nucleation cores, increasing the fraction of the equiaxed grain zone. Bigger effective heterogeneous nucleation cores number density leads to a larger fraction of the equiaxed grain zone.  相似文献   

10.
Effects of alloying with combinations of the elements Mo, Cr and B on the bainite transformation behaviour and microstructure of hot‐rolled high strength sheet steels microalloyed with mass contents of Ti and Nb, 0.05 or 0.15 % C and 1.5 % Mn have been studied. The relationships between microstructures formed in the steels coiled at various temperatures and their mechanical properties have been investigated. The 0.15 % C microalloyed steel alloyed with Mo,Cr and B with a complex bainitic microstructure was found to have distinctive high performance behaviour combining continuous yielding, high tensile strength and plasticity after coiling in a wide temperature region. The strain hardening of the micro‐constituents typical for the investigated steels has been analysed to have a better understanding of the mechanical properties of complex phase microstructures in low alloy ferrous alloys. It was found that bainitic ferrite with austenitemartensite islands as a second phase leads to high strength and adequate elongation. The features of the bainite formation in the Mo, Cr and B alloyed CMn steel microalloyed with Ti and Nb during slow cooling from temperatures between 650 and 550 °C was studied by dilatometry.  相似文献   

11.
Twinning induced plasticity (TWIP) steels, which rely on high Mn contents to promote twinning as the deformation mechanism, exhibit high ultimate strengths together with outstanding combinations of ultimate strength and ductility. In terms of mechanical properties, one of the most important microstructural features is grain size. The knowledge of the kinetics of recrystallization mechanisms, i.e., dynamic recrystallization (DRX) and static recrystallization (SRX), can be used in order to control the grain size of the final product by a proper rolling schedule design. The focus of this work is the characterization of the DRX kinetics of two TWIP steels. The basic composition of the steels is Fe–21Mn–0.4C–1.5Al–1.5Si, and one of them is further alloyed with 0.12% V. With this objective, compression tests were carried out at 900, 1000, and 1100°C and strain rates ranging from 1 × 10?1 s?1 to 1 × 10?4 s?1. Furthermore, metallographic observation by optical microscopy (OM) was done to assess the evolution of grain size for the different deformation conditions. According to the results, the existence of V in the composition does not affect the hot flow behavior of the steel, although recrystallization fraction and recrystallized grain size decrease for the V‐containing steel.  相似文献   

12.
The possibility of applying new high‐strength steels with excellent forming behaviour (TRIP, TWIP and LIP steels) in automotive manufacturing is a significant potential for improvement in the area of reducing weight while simultaneously increasing crash safety. The present work investigates endogenous inclusions in some high‐alloy TRIP and TWIP steels because the most stringent product requirements are tightly related to cleanness. The expected formation of inclusions is discussed based on thermodynamic observations made with ThermoCalc. The solidification conditions were varied in experiments with the so‐called SSCT (submerged split chill tensile) apparatus. Furthermore, different treatment times were set in order to investigate this influence on the inclusions. A catalogue of endogenous inclusions in these new steel grades is currently being created with the help of the automated SEM/EDX inclusion analysis system at voestalpine Stahl GmbH in Linz. Further studies will follow to systematically determine the interactions between steel, slag and refractory materials.  相似文献   

13.
The increasing demand for excellent steel properties has led to the creation of new steel grades such as high manganese TWIP and TRIP steels which are scientifically examined in Germany within the international research framework of the SFB 761 “Steel-ab initio.” The production of these high-technology products, utilizing mainly the ingot-casting method, leads to new challenges in the prevention of cast defects. At RWTH Aachen University, a systematic investigation of the solidification process as it relates to shrinkage cavity, macrosegregation, cleanliness, and surface imperfections in as-cast ingots is being conducted. A particular attention was devoted to the effects of such casting parameters as superheat, pouring rate, hot top, and stirring conditions on the solidification and cleanliness of low carbon alloyed and high manganese alloyed steels. The experimental results show that rising manganese content leads to a higher amount and larger size of inclusions while rising carbon content enhances the inclusion generation in the same way. It was found that a bottom teeming system combined with an inert gas atmosphere produces the best quality and that if casting is performed with a runner-system, it is important to use a SiO2-free refractory to avoid oxidizing the Mn content of the melt to MnO inclusions by redox-reactions.  相似文献   

14.
The properties of high‐speed tool steels can be improved by modifying their chemical composition or the technology of production. Nitrogen alloying is an attractive technology to enhance the mechanical and physical properties of tool steels. In this work, modified super hard high‐speed tool steel was produced through nitrogen alloying and decreasing the level of cobalt content in investigated steels. This work aims to study the effect of nitrogen as alloying element on carbides and carbo‐nitrides precipitates type, shape, and size for investigated steels. From the results obtained from Thermo‐Calc, it was concluded that nitrogen alloying produced large amount of stable austenite, also eutectic carbides precipitates (M6C and M7C3) were stable at room temperature. Transmission electron microscope (TEM) images for traditional grade showed that the as cast structure contains beside the carbides network other single carbides precipitates. While on the other hand the selected area diffraction pattern (SADP) images of nitrogen alloyed grade shows fine carbides and carbo‐nitrides precipitates with more amount of retained austenite in the ferrite matrix, they showed also the presence of the eutectic precipitates as well as the dislocations.  相似文献   

15.
《粉末冶金学》2013,56(2):125-140
Abstract

Ni, Cu and in some cases Mo are the alloying elements which have traditionally been used in sintered steels. High performance of powder metallurgy (PM) structural parts from Fe powders is reached mainly by alloying of Ni. The use of Mn in Fe base PM structural parts has been avoided because of its high affinity to oxygen. It is difficult to sinter Mn steel, without oxidation, in industrial atmospheres. However, the PM industry follows also possibilities in order to develop Ni free sintered steels which render as high mechanical properties as diffusion alloyed Ni containing sintered steels and further fulfil the requirements of health protection. In recent years Mn have been introduced as alloying element in Fe based structural parts, on laboratory scale and also for pilot scale production. In this paper the factors that contribute to the structure and mechanical properties of sintered Mn steels are summarised.  相似文献   

16.
For the modeling of the mechanical behavior of a two phase alloy with the rule of mixture (RM), the flow stress of both phases is needed. In order to obtain these information for the α′‐martensite in high alloyed TRIP‐steels, compression tests at cryogenic temperatures were performed to create a fully deformation‐induced martensitic microstructure. This martensitic material condition was subsequently tested under compressive loading at ?60, 20, and 100°C and at strain rates of 10?3, 100, and 103 s?1 to determine the mechanical properties. The α′‐martensite possesses high strength and surprisingly good ductility up to 60% of compressive strain. Using the flow stress behavior of the α′‐martensite and that of the stable austenitic steel AISI 316L, the flow stress behavior of the high alloyed CrMnNi TRIP‐steel is modeled successfully using a special RM proposed by Narutani et al.  相似文献   

17.
TRIP‐aided steels offer an excellent combination of strength and formability, which makes them particularly interesting for use in automotive applications. Recent investigations have shown that while the typical high CMnSi TRIP‐aided steel composition offers good mechanical properties, alloying with other elements or a modification of the processing are required to make this steel readily galvanizable without loss of the TRIP properties. Al‐alloying seems especially promising to realize this goal and P could also be an alternative. Due to the very specific thermal processing needed to obtain a TRIP microstructure, it is important to know the influence of these alloying elements on the re‐austenitization kinetics during the annealing. This paper aims at identifying the differences in the influence of Si, Al and P on the intercritical annealing of TRIP‐aided steels. The equilibrium thermodynamics calculations and diffusion‐controlled transformation simulations were used in order to predict the transformation behaviour, and experimental verification was done based on dilatometric experiments.  相似文献   

18.
Cr‐Mn steel grades with high nitrogen contents are becoming increasingly important in the field of austenitic stainless steels. Industrial production facilities allow to use two different strategies to reach a high nitrogen content. The first involves taking advantage of the pressurised‐electroslag remelting process, which is operated at elevated nitrogen partial pressure; the second consists of adding elements which increase the nitrogen solubility of the melt so that high nitrogen contents can be achieved at atmospheric pressure. This paper focuses on nitrogen solubility and austenite stability. These have been observed as important and in some cases restricting for the successful implementation and production of high alloyed Cr‐Mn austenitic steels. The precondition for a stable austenitic microstructure can be predicted with the help of equations using chromium and nickel equivalents. Different formulae were tested and their results compared to the microstructure of the alloys. The nitrogen solubility in the melt is particularly important for the steel grades cast under atmospheric conditions. It has been found feasible to produce steel grades up to 0.9 mass percent nitrogen at atmospheric pressure on an industrial scale. Several theoretical approaches for calculating the nitrogen solubility in the melt were tested for atmospheric conditions and compared to the chemical analyses of conventionally cast Cr‐Mn steel grades.  相似文献   

19.
Continuous casting of peritectic steels is often difficult and critical; bad surface quality, cracks, and even breakouts may occur. The initial solidification of peritectic steels within the mold leads to formation of surface depressions and uneven shell growth. As commercial steels are always multicomponent alloys, the influence also of the alloying elements besides carbon on the peritectic phase transition needs to be taken into account. Information on the solidification sequence and phase diagrams for initial solidification are lacking especially for new steel grades, like high-alloyed TRIP-steels with high Mn, Si, and particularly high Al contents. Based on a comprehensive method development, the current study shows that differential scanning calorimeter measurements allow a clear prediction if an alloy is peritectic (i.e., critical to cast). In order to confirm these results, thermo-optical analyses with a high-temperature laser-scanning-confocal-microscope are performed to observe the phase transformations in situ up to the melting point.  相似文献   

20.
For demanding wire applications steel cleanliness should be very high and the inclusions inevitably found in steel should be harmless. This means strict control of inclusions' size, quantity, and composition, pursuing deformable inclusions in rolling conditions. Primary inclusions are formed during steel treatment in the ladle. Most of these are removed to the ladle slag or on the lining. However, the rest of the inclusions still remain through the successive process stages, and some new inclusions are formed during casting and solidification. Conventionally, deformable inclusions are produced by Si–Mn deoxidation resulting in MnO–SiO2–Al2O3 inclusions. This leaves, however, the oxygen content too high for demanding applications. In order to get really clean steel, the Si deoxidation needs to be strengthened by lowering the activity of SiO2 forming in steel. This can be done by bringing the steel in intimate contact with a slag containing SiO2–MnO–Al2O3 and additionally CaO and some MgO. With this kind of intensified Si deoxidation it is possible to produce steels with low oxygen content having inclusions that will elongate at rolling. In this paper thermodynamic examination of potential slag systems and compositions to equilibrate with steels having medium carbon and high silicon were scrutinized. The optimal slag composition for producing low‐O steels with deformable inclusions was evaluated by using FactSage thermodynamic calculation program. The lowest SiO2 activities at the region in which slag is still liquid at 1400°C, can be found when slag composition is approximately 36–40 wt% SiO2, 6–18 wt% Al2O3, 30–40 wt% CaO, 6–8 wt% MgO, and 2–4 wt% MnO. Industrial heats using intensified Si deoxidation and slag based inclusion engineering were produced in a steel mill with 60 tons heat size. Inclusions and slag compositions were in satisfactory accordance with the theoretical examinations, though some scattering was discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号