首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emphasis in this paper is on the fault ride-through and grid support capabilities of multi-pole permanent magnet synchronous generator (PMSG) wind turbines with a full-scale frequency converter. These wind turbines are announced to be very attractive, especially for large offshore wind farms. A control strategy is presented, which enhances the fault ride-through and voltage support capability of such wind turbines during grid faults. Its design has special focus on power converters' protection and voltage control aspects. The performance of the presented control strategy is assessed and discussed by means of simulations with the use of a transmission power system generic model developed and delivered by the Danish Transmission System Operator Energinet.dk. The simulation results show how a PMSG wind farm equipped with an additional voltage control can help a nearby active stall wind farm to ride through a grid fault, without implementation of any additional ride-through control strategy in the active stall wind farm.  相似文献   

2.
Wind Energy Conversion System (WECS) based on Doubly Fed Induction Generator (DFIG) connected to the grid is subjected to high transient currents at rotor side and rise in DC-link voltage during voltage sag at stator/grid side. To secure power system operation wind turbines have to meet grid requirements through the Low voltage ride through (LVRT) capability and contribute to grid voltage control during severe situations. This paper presents the modeling and control designs for WECS based on a real model of DFIG taking into account the effect of stator resistance. The non-linear control technique using sliding mode control (SMC) strategy is used to alter the dynamics of 1.5 MW wind turbine system connected to the grid under severe faults of grid voltage. The paper, also discusses the transient behavior and points out the performance limit for LVRT by using two protection circuits of an AC-crowbar and a DC-Chopper which follow a developed flowchart of system protection modes under fault which achieved LVRT requirements through results. The model has been implemented in MATLAB/SIMULINK for both rotor and grid side converters.  相似文献   

3.
Fault ride through of fully rated converter wind turbines in an offshore wind farm connected to onshore network via either high voltage AC (HVAC) or high voltage DC (HVDC) transmission is described. Control of the generators and the grid side converters is shown using vector control techniques. A de-loading scheme was used to protect the wind turbine DC link capacitors from over voltage. How de-loading of each generator aids the fault ride through of the wind farm connected through HVAC transmission is demonstrated. The voltage recovery of the AC network during the fault was enhanced by increasing the reactive power current of the wind turbine grid side converter. A practical fault ride through protection scheme for a wind farm connected through an HVDC link is to employ a chopper circuit on the HVDC link. Two alternatives to this approach are also discussed. The first involves de-loading the wind farm on detection of the fault, which requires communication of the fault condition to each wind turbine of the wind farm. The second scheme avoids this complex communication requirement by transferring the fault condition via control of the HVDC link to the offshore converter. The fault performances of the three schemes are simulated and the results were used to assess their respective capabilities.  相似文献   

4.
针对双馈风电机组(DFIG)在电网电压不平衡时,二倍频扰动分量会造成定转子过电流、功率脉动、转矩脉动等一系列电气和机械的问题,提出了新型DFIG-DVR系统,即串联DVR始终维持DFIG定子端电压恒定,从根源上隔离电网不平衡故障的影响,从而在整个故障运行过程中,DFIG仍可以实现转子侧变换器功率解耦控制和网侧变换器维持直流电压恒定的目标。采用PSCAD/EMTDC建立DFIG-DVR系统模型,对比分析了电网电压不平衡时DVR的不投切与投切对DFIG的影响。结果表明,在电网电压不平衡条件下,所提控制方案可以实现DFIG的平衡运行。  相似文献   

5.
This paper presents a new robust and effective control strategy to mitigate symmetrical voltage dips in a grid‐connected doubly fed induction generator (DFIG) wind energy conversion system without any additional hardware in the system. The aim is to control the power transmitted to the grid so as to keep the electrical and mechanical quantities above their threshold protection values during a voltage dip transient. To achieve this, the references of the powers are readjusted to adapt the wind energy conversion system to the fault conditions. Robust control strategies, combining the merits of sliding mode theory and fuzzy logic, are then proposed in this paper. These controllers are derived from the dynamic model of the DFIG considering the variations in the stator flux generated by the voltage drop. This approach is found to yield better performance than other control design methods which assume the flux in the stator to remain constant in amplitude. This control scheme is compliant with the fault‐ride‐through grid codes which require the wind turbine generator to remain connected during voltage dips. A series of simulation scenarios are carried out on a 3‐MW wind turbine system to demonstrate the effectiveness of the proposed control schemes under voltage dips and parameter uncertainty conditions.  相似文献   

6.
目前,国内外对DFIG的研究主要侧重于风力发电机组控制策略方面,而对于不同电网故障情况下DFIG的运行特性分析较少。鉴于此,在DIgSILENT/PowerFactory下建立TDFIG模型,利用含风电场的WSCC三机九节点仿真系统,进行了电网不同故障情况下的一系列仿真,重点分析了电网不同故障情况下DFIG的运行特性,研究了风电场与电网之间的交互影响及相应的保护措施,为大规模风电接入电网的运行控制提供依据。  相似文献   

7.
变速双馈风电机组低电压穿越功能仿真   总被引:3,自引:2,他引:3  
分析了变速恒频双馈风力发电机组的工作原理,建立了包含变频器的双馈风力发电机组动态数学模型,并利用MATLAB/Simulink软件搭建了并网型双馈风力发电机组的仿真模块,通过仿真试验分析了外部电网故障下变速恒频双馈风力发电机组的低电压穿越功能,为变速恒频双馈风力发电机组在大型并网风电场中的应用提供了可靠的理论依据  相似文献   

8.
双馈感应式风力发电系统低电压运行特性研究   总被引:2,自引:1,他引:1  
双馈感应发电机(DFIG)具有有功、无功功率独立调节能力及励磁变频器所需容量小等优点,在风力发电系统中得到越来越广泛的应用。但正是励磁变频器的过流能力限制使得其对电网故障非常敏感,电网故障下DFIG风电机组的控制能力受到限制。当前国外大多数风电并网标准都要求风力发电机在电网电压跌落的情况下不能从电网中解列,以便在故障后电网恢复过程中提供功率支持,避免发生后续更为严重的电网故障,这即是对风电机组低电压穿越能力的要求。为了保护变流器和对电网提供支撑,需要研制一种能够在电网故障发生时为故障电流进行旁路的设备——Crowbar电路。针对Crowbar的电流旁路装置进行了研究,说明Crowbar电路具有抑制转子浪涌电流和保护直流母线的作用,并在小功率平台上进行了试验,证明了这种设备对于提高DFIG系统的LVRT能力具有重要的作用。  相似文献   

9.
侯树文  胡娅珂 《电力与能源》2012,(2):159-161,173
双馈风力发电机的低电压穿越能力较差,Crowbar技术是提高双馈风力发电机低电压穿越能力的有效手段。分析了DFIG机端短路时Crowbar阻值对转子电流和暂态过程的影响,指出传统Crowbar电路采用固定的阻值,无法兼顾低电压穿越过程中各阶段对该阻值的不同要求。为此提出了一种变阻值Crowbar的电路,采用这种电路只要控制脉宽就可以改变Crowbar电路的等效电阻,在电网发生地电压故障后,可以根据保护过程不同阶段的特点及时调整Crowbar电路电阻,提高双馈风力发电机的低电压穿越能力。为了验证调整效果对新设计的Crowbar电路的调整效果进行了仿真。仿真结果表明,变阻值Crowbar能够通过控制脉宽实现对Crowbar等效电阻的有效控制。  相似文献   

10.
为解决双馈感应发电机(DFIG)难以满足严重电网电压骤升故障时穿越测试要求问题,提出了基于无功补偿与去磁电流协同控制的改进DFIG高电压穿越控制策略。在网侧变换器无功补偿稳定直流母线电压的基础上,协同转子侧变换器去磁电流控制,确保有功功率平衡及RSC容量完全利用情况下向转子注入无功。对比传统方法,改进控制策略有严重骤升故障适应性强与转子侧变换器(RSC)容量利用率高的双重优势。最后在Matlab/Simulink搭建模型,仿真结果验证所提方案能更好地满足风电机组HVRT的测试要求,实现高电压穿越。  相似文献   

11.
A control strategy for compensating AC network voltage unbalance using doubly fed induction generator (DFIG)-based wind farms is presented. A complete DFIG dynamic model containing both the rotor and grid side converters is used to accurately describe the average and ripple components of active/reactive power, electromagnetic torque and DC bus voltage, under unbalanced conditions. The principle of using DFIG systems to compensate grid voltage unbalance by injecting negative sequence current into the AC system is described. The injected negative sequence current can be provided by either the grid side or the rotor side converters. Various methods for coordinating these two converters are discussed and their respective impacts on power and torque oscillations are described. The validity of the proposed control strategy is demonstrated by simulations on a 30 MW DFIG-based wind farm using Matlab/Simulink during 2 and 4% voltage unbalances. The proposed compensation strategy can not only ensure reliable operation of the wind generators by restricting torque, DC link voltage and power oscillations, but also enable DFIG-based wind farms to contribute to rebalancing the connected network.  相似文献   

12.
This paper analyzes the ability of a doubly fed induction generator (DFIG) in a wind turbine to ride through a grid fault and the limitations to its performance. The fundamental difficulty for the DFIG in ride-through is the electromotive force (EMF) induced in the machine rotor during the fault, which depends on the dc and negative sequence components in the stator-flux linkage and the rotor speed. The investigation develops a control method to increase the probability of successful grid fault ride-through, given the current and voltage capabilities of the rotor-side converter. A time-domain computer simulation model is developed and laboratory experiments are conducted to verify the model and a control method is proposed. Case studies are then performed on a representatively sized system to define the feasibility regions of successful ride-through for different types of grid faults.  相似文献   

13.
The purpose of this paper is to improve the control performance of the variable speed, constant frequency doubly-fed induction generator in the wind turbine generation system by using fuzzy logic controllers. The control of the rotor-side converter is realized by stator flux oriented control, whereas the control of the grid-side converter is performed by a control strategy based on grid voltage orientation to maintain the DC-link voltage stability. An intelligent fuzzy inference system is proposed as an alternative of the conventional proportional and integral (PI) controller to overcome any disturbance, such as fast wind speed variation, short grid voltage fault, parameter variations and so on. Five fuzzy logic controllers are used in the rotor side converter (RSC) for maximum power point tracking (MPPT) algorithm, active and reactive power control loops, and another two fuzzy logic controllers for direct and quadratic rotor currents components control loops. The performances have been tested on 1.5 MW doubly-fed induction generator (DFIG) in a Matlab/Simulink software environment.  相似文献   

14.
为保持系统稳定,必须要求大规模并网风电场具有低电压穿越能力。双馈感应发电机(DFIG)低电压穿越功能已成为研究热点。介绍了串联制动电阻装置对双馈感应发电机暂稳特性贡献的机理。详细分析了在电网故障情况下,制动电阻装置对双馈风电场低电压穿越能力的贡献,分别就制动电阻接在风电场升压变处与接在双馈感应发电机机端对低电压穿越的改善效果进行分析。试验结果表明:故障期间投入适当大小制动电阻,能较好地提高双馈风电场低电压穿越功能;将制动电阻放置在风电场升压变处贡献效果优于将制动电阻装置放置在双馈感应发电机机端处。  相似文献   

15.
双馈风力发电机组并网控制策略及性能分析   总被引:1,自引:0,他引:1  
为了实现双馈风力发电机组无冲击电流并网,基于电网电压定向矢量控制技术,提出了一种考虑转子电流动态调节特性的双馈风力发电机组空载并网控制策略。基于Matlab/Simulink仿真平台,建立了双馈风力发电机系统及其并网控制的数学模型,并对不同初始运行转速的双馈风力发电机组的自动并网运行特性进行了仿真。仿真实验结果证明无论初始转速为同步转速,还是超、亚同步转速,利用提出的并网控制策略,双馈风力发电机组能很好快速地建立定子电压,并网过渡过程定子电流基本没有冲击。  相似文献   

16.
[目的]为改进半直驱风电系统的故障电压穿越(Flexible Fault Ride Through, FFRT)能力,提出采用电网故障时无功优先的改进网侧控制策略。[方法]在分析传统网侧控制策略的基础上,根据最新的故障电压穿越能力测试规程在传统网侧控制加入无功优先控制,在电网暂态故障期间优先向电网注入无功电流支撑电网电压恢复。根据改进网侧控制策略,对电网深度跌落和升高时采用卸荷电路结合改进网侧控制策略实现了风电机组的FFRT仿真运行,结合某项目6 MW半直驱风电机组,采用移动故障电压穿越测试设备进行故障电压现场测试。[结果]测试和仿真结果表明,改进网侧控制策略可提升半直驱风电系统的FFRT运行,无功电流稳定控制。[结论]改进网侧控制策略可在多种对称低电压/高电压故障工况和不对称高电压故障工况下优先向电网注入对应的稳定无功电流,有利于辅助电网电压恢复和提升半直驱风电系统的FFRT能力。  相似文献   

17.
Doubly fed induction generator is very sensitive to voltage variations in the grid, which pose limitation for wind power plants during the grid integrated operation. Handling the uncertainity in wind speed and grid faults is a major challenge to fulfill the modern grid code requirements. This paper proposes a new control strategy for Rotor side converter using Interval type-2 fuzzy sets which can model and handle uncertainties in the system parameters. The presence of third dimension in the membership function, offers an additional degree of freedom in the design of the controller to counter the effects of fluctuations in wind speed and low voltage during severe grid fault conditions. A 2 MW DFIG connected to the grid is modelled in simulation software RSCAD and interfaced with Real time digital simulator (RTDS) to perform the simulations in real-time. The RTDS platform is considered by many research laboratories as real-time testing module for controller prototyping and also for hardware in the loop (HIL) applications. The controller performance is evaluated in HIL configuration, by performing the real-time simulations under various parameter uncertainties. The proposed controller can improve the low voltage ride through capability of DFIG compared to that of PI and type-1 fuzzy controller.  相似文献   

18.
双馈感应风力发电系统低电压穿越控制   总被引:2,自引:0,他引:2  
传统的双馈感应发电机(DFIG)矢量控制方案忽略了定子暂态磁通,导致当电网出现故障时控制性能恶化.为了提高电网故障下DFIG的不间断运行能力,将矢量控制与自抗扰控制器结合起来,利用扩张状态观测器估计出定子暂态磁通和电机参数误差对系统的影响并加以补偿.仿真结果表明该文提出的控制方法削弱了电网故障时DFIG的转子暂态电流峰值和电磁转矩波动,有效地保护了转子变频器和风力机机械结构,而且对电机参数误差具有鲁棒性.  相似文献   

19.
The doubly fed induction generator (DFIG) is interfaced to the AC network through voltage source converters (VSCs) which are considered to be the core of the DFIG system. This paper investigates the impact of different intermittent VSC faults on the overall performance of a DFIG-based wind energy conversion system (WECS). The fault ride through capability of the DFIG under various VSC faults is also investigated. Faults such as open circuit and short circuit across the switches, when they occur within the grid side converter (GSC) and rotor side converter (RSC), are considered and compared in this paper. Short circuit and open circuit across the DC-link capacitor are also considered in this study as common VSC problems. Simulation results indicate that the short circuit faults have a severe impact on the overall performance of the DFIG, especially when they occur within the GSC. This is attributed to the fact that the GSC directly regulates the point of common coupling voltage. The open circuit faults have less impact on the performance of the DFIG-based WECS. A proper controller along with flexible AC transmission device should be available to compensate the required active and reactive power during these faults. A protection technique is necessary to detect these faults in advance to protect the VSC switches and the machine winding from any catastrophic failure.  相似文献   

20.
High penetration of wind generation challenges wind turbine operators to supply reliable power and extract optimum power from the wind. Hence, the fault ride through (FRT) capability of wind turbine together with the optimum power tracking and regulation of wind turbine output voltage due to fluctuating nature of the wind becomes essential. In this paper, a method is proposed to ensure that the double fed induction generator (DFIG) wind turbine continues to operate during severe grid faults and maintains a constant output voltage, irrespective of the fluctuating wind. The proposed controller also allows the DFIG wind turbine to track optimum power from the wind. Extensive simulation is performed using PSCAD/EMTDC software and results obtained show that the DFIG output voltage fulfills the grid code requirements. The results also show that the proposed method is able to track the optimum power, regulate the DFIG output voltage and perform fault ride through of wind turbine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号