首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A material model is presented that accounts for strain rate dependent inelastic deformation and strain‐induced phase transformation in TRIP‐steels. Modifications for the kinetics equations of the strain‐induced phase transformation, introduced by Stringfellow, are proposed to overcome a drawback of Stringfellow's model. A parameter identification strategy that relies on Gauss‐Markov estimates is used to determine the model parameters from experimental data of a recently developed cast TRIP‐steel. Good agreement is observed between experimental results of the compression test and the corresponding finite element simulation employing the proposed model. This forms the basis for future applications of the material model in the design of composites and structures.  相似文献   

2.
The dynamic testing of high strength automotive steel grades is of great practical importance if their crash‐worthiness is to be evaluated. During forming operations, steels are processed in a controlled dynamic manner. In collisions, the deformation is different in the sense that the deformation is not controlled, i.e. both strain and strain rate are not pre‐determined. No clear standard testing procedures are currently available to test high strength steels dynamically, in order to evaluate their performance during car crashes. High tensile strength TRIP‐aided steels have been developed by the steel industry because of their promising high strain rate performance. The present contribution focuses on the effect of the strain rate and temperature on the mechanical behaviour of the low alloy high strength TRIP steel. The tests were carried out on the separated phases in order to determine their specific high strain rate deformation response. The temperature‐dependence of the transformation rate of the retained austenite is presented. It is argued that the adiabatic conditions present during high strain rate deformations have a beneficial effect on the behaviour of TRIP steel.  相似文献   

3.
To obtain the superior strength‐ductility‐balance of TRIP‐grades, a special chemical composition in combination with well adapted processing parameters are a prerequisite. Despite of their excellent formability performance in terms of drawability as characterized by high n‐ and elongation values, compared to mild steels TRIP‐grades are challenging in the press and the body shops. The high strength level in combination with the high work hardening of TRIP‐grades result in higher levels of spring back compared to mild steels and higher press forces are required. Furthermore, a higher sensitivity to failure for sharp bending radii and a deterioration of the formability of punched edges is reported for TRIP‐grades. While spring back can only be minimized by advanced forming processes supported by new simulation techniques with improved ability to predict spring back, the sensitivity to failure under special forming conditions can be influenced by optimizing microstructural features. Contrary to the forming behaviour, which is influenced significantly by the microstructure, the weldability is mainly governed by the chemical composition and the surface condition of the material. The high carbon content of TRIP‐grades compared to mild steels results in a higher hardening potential after welding. Additionally, a fracture behaviour untypical for mild steels after destructive testing of spot welds is sometimes observed for TRIP‐grades, which is assessed critically by some OEMs. In this work, after a discussion of the processing conditions, possibilities are demonstrated to improve the forming behaviour by an optimization of the microstructure and the spot weldability by adapting the chemical composition of low‐alloyed TRIP grades. First very promising results for TRIP‐grades with a minimum tensile strength level of 700 MPa are discussed.  相似文献   

4.
TRIP‐assisted multiphase steels have been thoroughly studied in the cold‐rolled and annealed state. The effects of hot‐rolling conditions on these steels are much less studied even though these are of major importance for industrial practice. This study was carried out in order to understand the effect of the hot deformation of austenite on the tensile properties of TRIP‐assisted multiphase steels. Two different compositions and microstructures are investigated. The first one is a low‐carbon steel (mass content of 0.15 %) with a microstructure consisting of an intercritical ferritic matrix, bainite and retained austenite. The second one is a medium‐carbon steel (mass content of 0.4 %) that consists of bainite and retained austenite. Both steels were deformed to various strain levels below the non‐recrystallisation temperature of austenite. The medium carbon steel was deformed in the fully austenitic temperature range whereas the low‐carbon steel was deformed in the intercritical temperature range. In both cases, the prior hot deformation of austenite brings about a large enhancement of the work‐hardening capabilities. In the case of the medium‐carbon steel, this effect can be attributed to a much larger TRIP effect taking place during straining. In the case of the low‐carbon steel, the improvement of the work‐hardening behaviour was attributed to an Interaction between the martensitic transformation and the dislocations already present within the surrounding ferrite matrix.  相似文献   

5.
Retained austenite as a key constituent in final microstructure plays an important role in TRansformation Induced Plasticity (TRIP) steels. The volume fraction, carbon concentration, size, and morphology of this phase are the well‐known parameters which effects on the rate of transformation of retained austenite to martensite and the properties of steel, are studied by many researchers. Of the transformation of retained austenite to martensite under strain in a TRIP steel is studied in this paper. The experimental results show that the transformation rate of retained, austenite with similar characteristics, to martensite in differently processed TRIP steel samples, exhibits an anisotropic behavior. This phenomenon implies a kind of variant selection of martensitic reaction of retained austenite under strain and is explained by ferrite texture developed in steel.  相似文献   

6.
In situ synchrotron X‐ray diffraction was used to investigate the martensitic transformation kinetics, lattice straining and diffraction peak broadening in cold‐rolled TRIP steel during tensile testing. Direct evidence of stress‐strain partitioning between different phases, dislocation pinning and differences in yielding behaviour of the different phases were clearly observed. The TRIP steel was subjected to a bake‐hardening treatment and a pronounced static strain aging effect was observed. In the present work, the martensitic transformation kinetics and the elastic micro‐strain evolution for both ferrite and retained austenite during the elasto‐plastic transition are reported with an emphasis on bake‐hardening with and without pre‐straining.  相似文献   

7.
Tensile tests for two commercial TRIP‐aided steels with the compositions of 0.091%C‐1.456%Si‐1.061%Mn and 0.134%C‐1.525%Si‐1.226%Mn in the strain rate range of 10?4‐103 s?1 were performed. Results for a pneumatic indirect bar‐bar tensile impact tester displayed sensitivity of tensile properties to strain‐rate within the testing range. XRD analysis for the relationship between the strain‐hardening exponent and the strain‐induced transformation of retained austenite suggested significant influence of the transformation of retained austenite on their work‐hardening behaviour.  相似文献   

8.
A pure TRIP‐steel alloy and a novel zirconia reinforced TRIP‐steel matrix composite were implemented in a 2D square‐celled honeycomb structure fabricated by a paste extrusion method, respectively. In terms of a series of compression tests in out‐of‐plane loading direction the buckling and the pronounced strain hardening behavior of the honeycomb structures are described with regard to different material compositions and varied nominal strain rates. Both the compressive flow behavior and the microstructure evolution in the crushed zones are controlled by the rate of formation of strain‐induced martensite and the ceramic particle/steel matrix interactions. The insertion of magnesia partially‐stabilized zirconia (Mg‐PSZ) particles in the austenitic steel matrix cause an increased yield strength and higher compression stresses up to certain deformations degrees. The limited ductility of the composite materials is a consequence of the rearrangement and fracture of zirconia particles initiating cracks and shear bands during deformation. Consistently, the visible strain rate effects on the mechanical responses of the honeycomb structures are similar to AISI 304L austenitic stainless steel specimens in the form of compact rods. However, at high local strain rates generated in drop weight impact tests a micro‐inertia factor support the failure behavior of the cellular structures.  相似文献   

9.
The mechanical and structural response of powder metallurgical square‐celled honeycomb structures to quasi‐static and dynamic impact loads are described. By constructing the cellular lattice with a novel metal matrix composite material based on a metastable high‐alloyed austenitic TRIP‐steel particle‐reinforced by magnesia partially stabilized zirconia (Mg‐PSZ), high specific yield and ultimate collapse strengths as well as a high ductility and an enhanced specific energy absorption were gained. In order to prove the temperature sensitivity of the honeycomb structures, a selected low‐reinforced composite condition was investigated in a pre‐series of quasi‐static compression tests at temperatures in the range between ?190 and 150°C. The present study shows that the deformation mechanisms of the TRIP‐matrix composite honeycomb structures can be classified with respect to strain rate and deformation temperature, including the failure characteristics and the strain‐induced α′‐martensite transformation in the austenitic steel matrices ensuring the TRIP effect. The evolution of the α′‐martensite phase content in the central crush zone of the TRIP steel and TRIP‐Matrix Composite honeycombs is demonstrated based on the results of magnetic balance measurements.  相似文献   

10.
Stress‐Temperature‐Transformation (STT) and Deformation‐Temperature‐Transformation (DTT) diagrams are well‐suited to characterize the TRIP (transformation‐induced plasticity) and TWIP (twinning‐induced plasticity) effect in steels. The triggering stresses for the deformation‐induced microstructure transformation processes, the characteristic temperatures, the yield stress and the strength of the steel are plotted in the STT diagram as functions of temperature. The elongation values of the austenite, the strain‐induced twins and martensite formations are shown in the DTT diagram. The microstructure evolution of a novel austenitic Cr‐Mn‐Ni (16%Cr, 6% Mn, 6% Ni) as‐cast steel during deformation was investigated at various temperatures using static tensile tests, optical microscopy and the magnetic scale for the detection of ferromagnetic phase fraction. At the temperatures above 250 °C the steel only deforms by glide deformation of the austenite. Strain‐induced twinning replaces the glide deformation at temperatures below 250 °C with increasing strain. Below 100 °C, the strain‐induced martensite formation becomes more pronounced. The kinetics of the α'‐martensite formation is described according to stress and deformation temperatures. The STT and DTT diagrams, enhanced with the kinetics of the martensite formation, are presented in this paper.  相似文献   

11.
For the modeling of the mechanical behavior of a two phase alloy with the rule of mixture (RM), the flow stress of both phases is needed. In order to obtain these information for the α′‐martensite in high alloyed TRIP‐steels, compression tests at cryogenic temperatures were performed to create a fully deformation‐induced martensitic microstructure. This martensitic material condition was subsequently tested under compressive loading at ?60, 20, and 100°C and at strain rates of 10?3, 100, and 103 s?1 to determine the mechanical properties. The α′‐martensite possesses high strength and surprisingly good ductility up to 60% of compressive strain. Using the flow stress behavior of the α′‐martensite and that of the stable austenitic steel AISI 316L, the flow stress behavior of the high alloyed CrMnNi TRIP‐steel is modeled successfully using a special RM proposed by Narutani et al.  相似文献   

12.
A composite consisting of 5 vol% MgO‐partially stabilized ZrO2 particles (Mg‐PSZ) and a TRIP‐steel‐matrix (CrNiMn steel; transformation induced plasticity) was produced through Spark Plasma Sintering. The processed material was tested under compression at various nominal strain rates (4 × 10?4 s?1; 10?3 s?1; 1 s?1, 102 s?1). Both, the pure steel and the composite showed a considerable plasticity and high strength due to the very fine grained steel matrix. The addition of 5 vol% ceramic particles led to a rise in the offset yield strength of 60 MPa till 90 MPa according to the applied strain rate. Up to a strain rate of 1 s?1, no change in offset yield strength was measured. A strain‐rate of 100 s?1 leads to a rise in the offset yield strength of approx. 100 MPa. Both, the ceramic and an increase in the strain rate implicate to an early generation of microdeterioration. Limited by the interfacial strength of steel and Mg‐PSZ, failure occurs early at the interfaces, which is shown in a decrease in the work hardening. During the compression, especially at higher strain‐rates, adiabatic heating occurred and counteracted to the martensitic transformation.  相似文献   

13.
Multiphase steels show a strong bake hardening effect being of importance for shaping of car body structural parts. The raised yield strength is exploited for improved crash resistance. Especially the automotive industry has a growing interest in using this effect. Normally the bake hardening effect is examined in tensile tests whereas under industrial conditions shaping of structural parts shows a wide spread of stress strain behaviour, from uniaxial conditions over plain strain to biaxial ones. So it is obvious that the bake hardening behaviour of a material cannot be described with results of the uniaxial tension test only. To give a first answer to this question, the dependence of the bake hardening effect on different biaxial prestrains was investigated for several hot rolled multiphase steels using various baking temperatures and holding times whereas the bake hardening effect under uniaxial prestrain had already been examined in [5]. Considering the choices to generate biaxial strain, a Marciniak forming tool with a diameter of 250 mm mounted on a 2500 kN hydraulic press was chosen. For control of plastic deformation and adjustment the non‐contact measuring system ARGUS, was used. To reduce the quantity of experiments “Design of Experiments” and statistical methods were applied for a martensitic steel, a dual phase steel, a complex phase steel, a ferrite‐bainite steel, and a retained austenite steel known as TRIP, all in hot rolled condition. As a result, a formula for yield stress, tensile strength and residual deformability was developed. Furthermore, a method was found to predict easily whether a steel under investigation is qualified for additional experiments in regard to bake hardening or more exactly its response to different baking temperatures and holding times.  相似文献   

14.
The effect of a bake‐hardening (BH) treatment on the microstructure and mechanical properties has been studied in C‐Mn‐Si TRansformation Induced Plasticity (TRIP) and Dual Phase (DP) steels after: (i) thermomechanical processing (TMP) and (ii) intercritical annealing (IA). The steels were characterized using X‐ray diffraction, transmission electron microscopy (TEM) and three‐dimensional atom probe tomography (APT). All steels showed high BH response. However, the DP and TRIP steels after IA/BH showed the appearance of upper and lower yield points, while the stress‐strain behavior of the TRIP steel after TMP/BH was still continuous. This was due to the higher volume fraction of bainite and more stable retained austenite in the TMP/BH steel, the formation of plastic deformation zones with high dislocation density around the “as‐quenched” martensite and “TRIP” martensite in the IA/BH DP steel and IA/BH TRIP steel, respectively.  相似文献   

15.
A considerable research effort has been done in the field of cold rolled TRIP steels submitted to a two‐step annealing cycle. After annealing, these steels contain retained austenite, which offers them superior mechanical properties required for specific applications in automotive industry. In the present work, a physically based microstructural model has been applied to describe the static stress‐strain behaviour of phosphorus alloyed TRIP steel. The impact of the TiC precipitation on the static stress‐strain behaviour for a Ti micro‐alloyed TRIP steel was simulated. The model calculations were compared with experimental stress‐strain curves. An excellent agreement between simulation and experimental data was demonstrated.  相似文献   

16.
Multiphase TRIP steels are a relatively new class of steels exhibiting excellent combinations of strength and cold formability, a fact that renders them particularly attractive for automotive applications. The present work reports models regarding the prediction of the stability of retained austenite, the optimisation of the heat‐treatment stages necessary for austenite stabilization in the microstructure, as well as the mechanical behaviour of these steels under deformation. Austenite stability against mechanically‐induced transformation to martensite depends on chemical composition, austenite particle size, strength of the matrix and stress state. The stability of retained austenite is characterized by the MσS temperature, which can be expressed as a function of the aforementioned parameters by an appropriate model presented in this work. Besides stability, the mechanical behaviour of TRIP steels also depends on the amount of retained austenite present in the microstructure. This amount is determined by the combinations of temperature and temporal duration of the heat‐treatment stages undergone by the steel. Maximum amounts of retained austenite require optimisation of the heat‐treatment conditions. A physical model is presented in this work, which is based on the interactions between bainite and austenite during the heat‐treatment of multiphase TRIP steels, and which allows for the selection of treatment conditions leading to the maximization of retained austenite in the final microstructure. Finally, a constitutive micromechanical model is presented, which describes the mechanical behaviour of multiphase TRIP steels under deformation, taking into account the different plastic behaviour of the individual phases, as well as the evolution of the microstructure itself during plastic deformation. This constitutive micromechanical model is subsequently used for the calculation of forming limit diagrams (FLD) for these complex steels, an issue of great practical importance for the optimisation of stretch‐forming and deep‐drawing operations.  相似文献   

17.
The stability of retained austenite and the kinetics of the strain‐induced martensitic transformation in micro‐alloyed TRIP‐aided steel were obtained from interrupted tensile tests and saturation magnetization measurements. Tensile tests with single specimens and at variable temperature were carried out to determine the influence of the micro‐alloying on the Msσ temperature of the retained austenite. Although model calculations show that the addition of the micro‐alloying elements influences a number of stabilizing factors, the results indicate that the stability of retained austenite in the micro‐alloyed TRIP‐aided steels is not significantly influenced by the micro‐alloying. The kinetics of the strain‐induced martensitic transformation was also not significantly influenced by addition of the micro‐alloying elements. The addition of micro‐alloying elements slows down the autocatalytic propagation of the strain‐induced martensite due to the increase of the yield strength of retained austenite. The lower uniform elongation of micro‐alloyed TRIP‐aided steel is very likely due to the presence of numerous precipitates in the microstructure and the pronounced ferrite grain size refinement.  相似文献   

18.
19.
The possibility of applying new high‐strength steels with excellent forming behaviour (TRIP, TWIP and LIP steels) in automotive manufacturing is a significant potential for improvement in the area of reducing weight while simultaneously increasing crash safety. The present work investigates endogenous inclusions in some high‐alloy TRIP and TWIP steels because the most stringent product requirements are tightly related to cleanness. The expected formation of inclusions is discussed based on thermodynamic observations made with ThermoCalc. The solidification conditions were varied in experiments with the so‐called SSCT (submerged split chill tensile) apparatus. Furthermore, different treatment times were set in order to investigate this influence on the inclusions. A catalogue of endogenous inclusions in these new steel grades is currently being created with the help of the automated SEM/EDX inclusion analysis system at voestalpine Stahl GmbH in Linz. Further studies will follow to systematically determine the interactions between steel, slag and refractory materials.  相似文献   

20.
Low alloy TRIP‐aided steels are very interesting for the automotive industry as they combine both a high strength and an excellent formability. Though the actually developed TRIP steels can be considered as low alloyed when compared to the first generations of steels exhibiting TRIP effect, due to their chemical composition, they still exhibit a quite high carbon equivalent. This is particularly detrimental for the weldability of those materials. After solidification, welds are very hard and can show a brittle behaviour. The hardness of the heat affected zone of the welds can even exceed 500HV and cold cracking phenomena is prone to occur. In the automotive industry, spot welding is the main joining process. During spot welding of TRIP steels, the interface between the plates can act like a notch and promote fracture of the weld. This is particularly dangerous when brittle welds are submitted to peel stresses. The aim of the paper is to demonstrate that a careful choice of the process parameters can significantly improve the resistance of the welds. The selection of the welding cycle parameters is far from being an easy task as many different parameters are involved. Therefore, a design of experiment methodology (DOE) was chosen to optimise the welding cycle for a cold‐rolled TRIP steel with a tensile strength above 700 MPa. Mechanical properties of the welds were significantly improved by use of pre‐ and post‐heat treatments. Those improved welding cycles were realised without excessive extension of the total weld cycle on a conventional spot welding machine. This means that the optimised welds can be obtained in the existing production lines without any additional investment or significant decrease in productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号