首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interest for the exploitation of the offshore wind energy is growing in Europe, where man land use is very high resulting in strong limitation to the installation of onshore wind farms. The today offshore operating wind power is 12 MW, with two wind farms in Denmark and one in Netherlands; it starts to be significant (0.6%) in terms of the onshore power, 2000 MW in Europe.In the world the onshore installed wind power is exceeding 4000 MW, but not so much up to now has been done on the offshore area outside Europe.The European four years experience on the prototypical offshore wind farms looks significantly promising and suggests to promote a similar approach in many densely populated coastal countries in the world with high electricity demand.Results of studies are presented on the offshore wind potential in the European countries and of the tentative evaluation for the Mediterranean basin, and the seas of USA and China. A review is made of the offshore applications, particularly for the Nothern European seas.Economy and environmental trends are illustrated in parallel to those of maturing offshore technology. It is suggested to prepare an action plan to promote the development of the offshore applications in the world context.  相似文献   

2.
In recent years, the wind power sector has begun to move offshore, i.e. to use space and good wind speeds on the open sea for large scale electricity generation. Offshore wind power, however, is not just technologically challenging but also a capital intensive and risky business that requires particular financial and organizational resources not all potential investors might have. We therefore address the question, what impact offshore wind power may have on ownership and organizational structures in the wind power sector. We compare on- and offshore wind park ownership in Denmark, the UK and Germany. The analysis shows that offshore wind power in all three countries is dominated by large firms, many of which are from the electricity sector. In Denmark and the UK, also investors from the gas and oil industry play an important role in the offshore wind business. This development represents a major shift for countries such as Germany and Denmark, in which the wind power sector has grown and matured on the basis of investments by individuals, farmers, cooperatives and independent project developers. The structural changes by which offshore wind power is accompanied have consequences for turbine manufacturers, project developers, investors, associations and policy makers in the field.  相似文献   

3.
The first offshore wind farm became operational in 1991 in Vindeby, Denmark. By 2008, large offshore wind farms had been built in Denmark, the UK, the Netherlands, Ireland, and Sweden with a total capacity of 1200 MW. Offshore wind farms have the potential to generate a significant fraction of US electrical consumption, but the US currently lacks offshore wind farms and is still developing a regulatory system. At the state level only Texas has a leasing system for offshore wind. Since all offshore land is the property of the state and cannot be legally developed without a lease from the government, these absences have stalled development. We review and compare regulatory and leasing systems developed in Europe and the US to inform a discussion of the major issues associated with the development of an offshore leasing and regulatory system. We focus on the tradeoffs between encouraging a sustainable energy source and ensuring environmental protection and public compensation. We conclude that there are likely multiple effective methods of regulation.  相似文献   

4.
This paper presents specific life cycle GHG emissions from wind power generation from six different 5 MW offshore wind turbine conceptual designs. In addition, the energy performance, expressed by the energy indicators Energy Payback Ratio (EPR) Energy Payback Time (EPT), is calculated for each of the concepts.There are currently few LCA studies in existence which analyse offshore wind turbines with rated power as great as 5 MW. The results, therefore, give valuable additional environmental information concerning large offshore wind power. The resulting GHG emissions vary between 18 and 31.4 g CO2-equivalents per kWh while the energy performance, assessed as EPR and EPT, varies between 7.5 and 12.9, and 1.6 and 2.7 years, respectively. The relatively large ranges in GHG emissions and energy performance are chiefly the result of the differing steel masses required for the analysed platforms. One major conclusion from this study is that specific platform/foundation steel masses are important for the overall GHG emissions relating to offshore wind power. Other parameters of importance when comparing the environmental performance of offshore wind concepts are the lifetime of the turbines, wind conditions, distance to shore, and installation and decommissioning activities.Even though the GHG emissions from wind power vary to a relatively large degree, wind power can fully compete with other low GHG emission electricity technologies, such as nuclear, photovoltaic and hydro power.  相似文献   

5.
M. El‐Shimy 《风能》2014,17(2):279-295
The analysis of reactive power for offshore and onshore wind farms connected to the grid through high‐voltage alternating‐current transmission systems is considered in this paper. The considered wind farm is made up with doubly fed induction generators (DFIGs). Modeling and improved analysis of the effective reactive power capability of DFIGs are provided. Particularly, the optimal power‐tracking constraints and other operational variables are considered in the modeling and analysis of the DFIG reactive power capability. Reactive power requirements for both overhead and cable transmission systems are modeled and compared with each other as well as with the reactive power capability of the wind farms. Possibility of unity power factor operation suggested by the German Electricity Association (VDEW) is investigated for both types of installations. Aggregate reactive power demands on both wind farms are assessed such that the bus voltages remain within an acceptable bandwidth considering various operational limits. The reactive power settings for both types of wind farm installations are determined. In addition, the minimum capacity and reactive power settings for reactive power compensation required for cable‐based installations are determined. Several numerical examples are given to illustrate the reactive power characteristics and capability of DFIGs, performance of transmission lines and reactive power analysis for DFIG‐based grid‐connected wind farms. A summary of the main outcomes of the work presented in this paper is provided in the conclusions section. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Reactive power management and control of distant large-scale offshore wind power farms connected to the grid through high-voltage alternating current (HVAC) transmission cable are presented in this paper. The choice of the transmission option is based on the capacity of the considered wind farm (WF) and the distance to the onshore grid connection point. The WF is made up of identical doubly-fed induction generators (DFIGs). Modelling and improved analysis of the effective reactive power capability of DFIGs as affected by various operational constraints are provided. In addition, modelling and analysis of the reactive power demands, balance, and control are presented. The minimum capacity and reactive power settings for reactive power compensation required for the system are determined. Possibility of unity power factor operation suggested by the German electricity association (VDEW) is investigated. A summary of the main outcomes of the work presented in this paper is provided in the conclusions section.  相似文献   

7.
Offshore wind power plants (WPPs) built near each other but far from shore usually connect to the main grid by a common high‐voltage DC (HVDC) transmission system. In the resulting decoupled offshore grid, the wind turbine converters and the high‐voltage DC voltage‐source converter share the ability to inject or absorb reactive power. The overall reactive power control dispatch influences the power flows in the grid and hence the associated power losses. This paper evaluates the respective power losses in HVDC‐connected WPP clusters when applying 5 different reactive power control strategies. The case study is made for a 1.2‐GW–rated cluster comprising 3 WPP and is implemented in a combined load flow and converter loss model. A large set of feasible operating points for the system is analyzed for each strategy. The results show that a selection of simulations with equal wind speeds is sufficient for the annual energy production comparison. It is found that the continuous operation of the WPPs with unity power factor has a superior performance with low communication requirements compared with the other conventional strategies. The optimization‐based strategy, which is developed in this article, allows a further reduction of losses mainly because of the higher offshore grid voltage level imposed by the high‐voltage DC voltage‐source converter. Reactive power control in HVDC‐connected WPP clusters change significantly the overall power losses of the system, which depend rather on the total sum of the injected active power than on the variance of wind speeds inside the cluster.  相似文献   

8.
Modern and sophisticated wind generators rated at up to 5 MW are in use on- and offshore in many European and other countries. They are made by a large and financially strong industry. In 2006, there were 1672 wind turbines in use in the UK, making up 2.5% of UK's electricity-generating capacity but producing under 1% of its electricity. The UK uses only about 1% of its wind power potential. Making use of more wind will involve developing new materials, new techniques and new mathematical modelling methods. The machines will need to be more reliable and robust, and will require a more flexible electricity system to feed into. In the longer term, there may be bigger machines of up to 10 MW, perhaps used in tandem with advanced electricity-storage technology. The growth of a European rather than UK power grid may allow renewables, including wind, to play a larger role.  相似文献   

9.
The British offshore windfarm programme presages the emergence of Britain as more of a leader than a laggard in renewables, the latter being the status it has hitherto endured in comparison to countries such as Denmark, Germany and Spain. Britain looks increasingly likely to exceed 20% of electricity being supplied from renewable energy by 2020, provided there continues to be adequate financial incentives for renewable energy. This turnaround is associated with increased British concerns about energy dependence on imported natural gas as well as pressure from EU legislation. However there are many planning pressures that countervail the drive for offshore wind power. British planning policy on offshore wind is distinctive (compared to other EU states) for its pragmatic, ‘criteria based’, approach that appears to favour offshore wind power development. The extent of the British offshore wind power programme is likely to depend heavily on consumer reactions to price increases caused by the offshore wind power programme.  相似文献   

10.
Wind power forecasting for projection times of 0–48 h can have a particular value in facilitating the integration of wind power into power systems. Accurate observations of the wind speed received by wind turbines are important inputs for some of the most useful methods for making such forecasts. In particular, they are used to derive power curves relating wind speeds to wind power production. By using power curve modeling, this paper compares two types of wind speed observations typically available at wind farms: the wind speed and wind direction measurements at the nacelles of the wind turbines and those at one or more on‐site meteorological masts (met masts). For the three Australian wind farms studied in this project, the results favor the nacelle‐based observations despite the inherent interference from the nacelle and the blades and despite calibration corrections to the met mast observations. This trend was found to be stronger for wind farm sites with more complex terrain. In addition, a numerical weather prediction (NWP) system was used to show that, for the wind farms studied, smaller single time‐series forecast errors can be achieved with the average wind speed from the nacelle‐based observations. This suggests that the nacelle‐average observations are more representative of the wind behavior predicted by an NWP system than the met mast observations. Also, when using an NWP system to predict wind farm power production, it suggests the use of a wind farm power curve based on nacelle‐average observations instead of met mast observations. Further, it suggests that historical and real‐time nacelle‐average observations should be calculated for large wind farms and used in wind power forecasting. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a method for real‐time estimation of the possible power of an offshore wind power plant when it is down‐regulated. The main purpose of the method is to provide an industrially applicable estimate of the possible (or reserve) power. The method also yields a real‐time power curve, which can be used for operation monitoring and wind farm control. Currently, there is no verified approach regarding estimation of possible power at wind farm scale. The key challenge in possible power estimation at wind farm level is to correct the reduction in wake losses, which occurs due to the down‐regulation. Therefore, firstly, the 1‐second wind speeds at the upstream turbines are estimated, since they are not affected by the reduced wake. Then they are introduced into the wake model, adjusted for the same time resolution, to correct the wake losses. To mitigate the uncertainties due to dynamic changes within the large offshore wind farms, the algorithm is updated at every turbine downstream, considering the local axial and lateral turbulence effects. The PossPOW algorithm uses only 1‐Hz turbine data as inputs and provides possible power output. The algorithm is trained and validated in Thanet and Horns Rev‐I offshore wind farms under nominal operation, where the turbines are following the optimum power curve. The results indicate that the PossPOW algorithm performs well; in the Horns Rev‐I wind farm, the strict power system requirements are met more than 70% of the time over the 24‐hour data set on which the algorithm was evaluated.  相似文献   

12.
Egypt is one of the Red Sea and Mediterranean countries having windy enough areas, in particular along the coasts. The coastal location Ras Ghareb on the Red Sea has been investigated in order to know the wind power density available for electricity generation. To account for the wind potential variations with height, a new simple estimating procedure was introduced. This study has explicitly demonstrated the presence of high wind power density nearly 900 kW/m2 per year at 100 m of altitude for this region. Indeed, the seasonal wind powers available are comparable to and sometimes higher than the power density in many European cities for wind electricity applications like Vindeby (Denmark) and also America.New technical analysis for wind turbine characteristics have been made using three types of commercial wind turbines possessing the same rotor diameter and rated power to choice the best wind machine suitable for Ras Ghareb station. As per the decreasing the cut-in wind speed for the wind turbine used, the availability factor increases for a given generator. That it could produce more energy output throughout the year for the location.The aim of this research, was to predict the electrical energy production with the cost analysis of a wind farm 150 MW total power installed at Ras Ghareb area using 100 wind turbines model (Repower MD 77) with 1.5 MW rated power. Additionally, this paper developed the methodology for estimating the price of each kWh electricity from the wind farms. Results show that this wind park will produce maximum energy of 716 GWh/year. The expected specific cost equal to 1.5 € cent/kWh is still less than and very competitive price with that produced from the wind farms in Great Britain and Germany and at the international markets of wind power. The important result derived from this study encourages several wind parks with hundreds of megawatts can be constructed at Ras Ghareb region.  相似文献   

13.
"渤海海上风力发电示范工程"于2007年初批准正式立项,建设国内第一台海上风力发电机组,容量为1.5MW。由于风能具有间歇性和随机性的特点,为了实现绥中36-1CEP平台孤立电网与风电机组互补发电,并且保证该电网的平稳运行,进行了海上平台孤立小电网的稳定性研究。海上石油平台电网允许的正常频率波动范围为±0.25Hz,频率偏差报警为±0.5Hz,电网频率将随着透平发电机组输出有功功率的变化而波动。当风力发电机组在额定输出有功功率跳闸退出电网时,对电网频率的影响最大;当风力发电机组在额定风速启动并网时,对电网频率的影响较大。在特定的风燃互补孤立小电网中,采用电网负荷频率调节方程,可以计算风力发电机组容量与电网总负荷之比和频率波动的关系。海上平台风燃互补发电孤立小电网稳定运行的条件为风力发电机组的容量与平台电网总容量的比值小于10%。在满足风力发电机组引起平台电网最大频率波动范围为±0.25Hz的条件下,额定有功功率为1.5MW的风力发电机组,可并入最低总有功功率为15MW的电网。将稳定性研究结论应用于渤海风力发电示范项目,保证了示范工程的顺利进行,实现了国内第一台海上风力发电机组与生产平台并网发电的稳定运行。  相似文献   

14.
Throughout Europe there is an increasing trend of connecting high penetrations of wind turbines to the transmission networks. This has resulted in transmission system operators revising their grid code documents for the connection of large wind farms. These specifications require large MW capacity wind farms to have the ability to assist in some of the power system control services currently carried out by conventional synchronous generation. These services include voltage and frequency control. It is now recognized that much of this new wind generation plant will use either fixed speed induction generator (FSIG)‐ or doubly fed induction generator (DFIG)‐based wind turbines. The addition of a control loop to synthesize inertia in the DFIG wind turbine using the power electronic control system has been described. The possibility of deloading wind turbines for frequency response using blade pitch angle control is discussed. A pitch control scheme to provide frequency response from FSIG and DFIG wind turbines is also described. A case study of an FSIG wind turbine with frequency response capabilities is investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Based on independent studies, this paper focuses on the significant discrepancy of 15 GW between the installed onshore wind generation capacity and what has been actually connected to the power network to reveal the challenges in meeting the Chinese renewable energy target. The recent accidents in Chinese North-Western transmission network (in February–April, 2011) demonstrated the urgent need for a fundamental review of the Chinese renewable energy policy. Offshore wind has been identified as the most feasible alternative to onshore wind to help deliver electricity to Eastern China during the summer peak time. By investigating and summarizing first hand experiences of participation in the Chinese renewable market, the authors provide the economic figures of the first cohort of Chinese offshore wind schemes. Large state owned enterprises (SOE) are dominating the offshore wind development, repeating their previous practices on the land. While this paper acknowledges the critical role of offshore wind generation in meeting Chinese renewable energy targets, it envisages an installed offshore capacity of approximately 2000 MW by 2015, much less than the 10000 MW governmental estimation, which can be attributed to the lack of detailed energy policy, network constraints, offshore wind installation difficulties and quality issues in the manufacture of turbines.  相似文献   

16.
Using a linear cost minimization model with a 1 h time resolution, we investigated the influence of geographic allocation of wind power on large‐scale wind power investments, taking into account wind conditions, distance to load, and the nature of the power system in place (i.e. power generation and transmission capacities). We employed a hypothetical case in which a 20% wind power share of total electricity demand is applied to the Nordic–German power system. Free, i.e. geographically unrestricted, allocation of new wind power capacity is compared with a case in which national planning frameworks impose national limitations on wind power penetration levels. Given the cost assumptions made in the present work, the prospect of increasing the wind power capacity factor from 20 to 30% could motivate investments in transmission capacity from northern Scandinavia to continental Europe. The results obtained using the model show that the distribution of wind farms between regions with favorable wind conditions is dependent upon two factors: (i) the extent to which existing lines can be used to transmit the electricity that results from the new wind power and (ii) the correlation for wind power generation between the exporting region and the wind power generation already in place. In addition, the results indicate that there is little difference, i.e. just over 1%, in total yearly cost between the free allocation of new wind power and an allocation that complies with national planning frameworks. However, on a national level, there are significant differences with respect to investments in transmission and wind power capacities and the replacement of conventional power generation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
工频过电压是影响220kV海上风电场混合海缆输电线路安全的重要因素。以我国东部某典型的220kV近海风电场输电系统为例,基于ATP-EMTP对海上风电场系统及其送出的混合海缆输电线路进行建模,对混合线路的空载长线电容效应工频过电压进行了理论分析,分别仿真计算了不同海缆类型、海缆长度、海缆架空线比例下空载容升及单相接地三相断开的工频过电压。结果表明,同等截面下,三芯海缆时工频过电压整体较单芯海缆严重;随着海缆占比增大,混合海缆输电线路由于容升效应导致的工频过电压先增大后减小;对于装机容量为200MW的海上风电场,当海缆长度超过27km时,工频过电压将超过规定的1.3p.u.。  相似文献   

18.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshore farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non‐uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. We show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.  相似文献   

19.
考虑大规模风电接入的电力规划研究   总被引:1,自引:0,他引:1  
由于风电出力的不确定性、反调峰性和风电场选址的限制等问题,大规模风电并网后要求电力系统留有更多的备用电源和调峰电源,且电网结构薄弱远距离输送能力有限,使得多数风电场出力无法被消纳,对系统的稳定运行、电源规划和电网规划等方面造成了很大的负面影响,阻碍了风电的规模化应用。分析了大规模风电接入对系统可靠性、系统备用以及运营成本等带来的挑战,从电力规划角度回顾和评述了国内外风电接入系统在电源规划、电网规划以及电源电网协调规划等领域的研究进展和研究现状,明确了该领域的研究重点和研究方向。  相似文献   

20.
In last two years offshore wind energy is becoming a focal point of national and non national organizations particularly after the limitations of fossil fuel consumption, adopted by many developed countries after Kyoto conference at the end of 1997 on global climate change. North Europe is particularly interested in offshore for the limited land areas still available, due to the intensive use of its territory and its today high wind capacity. Really the total wind capacity in Europe could increase from the 1997 value of 4450 MW up to 40 000 MW within 2010, according the White Paper 1997 of the European Commission; a significant percentage (25%) could be sited offshore up to 10 000 MW, because of close saturation of the land sites at that time. World wind capacity could increase from the 1997 value of 7200 MW up to 60 000 MW within 2010 with a good percentage (20%) offshore 12 000 MW. In last seven years wind capacity is shallow waters of coastal areas has reached 34 MW. Five wind farms are functioning in the internal seas of Netherlands, Denmark, Sweden; however such siting is mostly to be considered as semi-offshore condition. Wind farms in real offshore sites, open seas with waves and water depth over 10 m, are now proposed in North Sea at 10–20 km off the coasts of Netherland, Denmark using large size wind turbine (1–2 MW). In 1997 an offshore proposal was supported in Netherland by Greenpeace after the OWEMES '97 seminar, held in Italy on offshore wind in the spring 1997. A review is presented in the paper of the European offshore wind programs with trends in technology, economics and siting effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号