首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单流板坯中间包内湍流抑制器对流场的影响   总被引:2,自引:0,他引:2  
通过水力学模型实验,研究了湍流抑制器对单流板坯中间包内钢液流动的影响,并比较了有无湍流抑制器时中间包内钢液流动的特性。湍流抑制器使钢液由长水口注入中间包后再返回,从而消除了中间包短路流,发展了表面流,延长了滞止时间和平均停留时间,有利于中间包内夹杂物的去除。湍流抑制器与单挡坝的结构在控制中间包内钢液流动方面效果较好。  相似文献   

2.
A three‐strand tundish belonging to a billet caster was water modelled and plant trials were performed to compare the performance of a pouring box and a turbulence inhibitor in terms of melt flow parameters and steel cleanliness. A tailor made turbulence inhibitor for this tundish is useful to accomplish with flow control of fluid turbulence and even melt redirection to all strands. The turbulence inhibitor helps to decrease nitrogen pickup during ladle changes and to float out inclusions towards the covering slag. As a consequence, rod operations to take of alumina deposits from nozzle walls are considerably decreased using a turbulence inhibitor.  相似文献   

3.
Flow in a six-strand billet tundish, using turbulence inhibitors (TIs), was characterized using inputs of a pulsed tracer and mathematical simulations. It was found that to control turbulence attaining high fluid fractions under plug flow patterns, the key parameter for designing TIs is the dissipation rate of kinetic energy. TI designs that induce steep dissipation gradients are less efficient as flow controllers than those designs that yield more prolonged dissipation gradients from the inhibitor bottom to the bulk flow. A direct relationship between the dissipation of kinetic energy and the linear acceleration of the smallest turbulent eddies in the flow was established through dimensional analysis. The inhibitor with the highest linear accelerations of eddies in the viscous sublayer at the Kolmogorov scale, for a given liquid flow rate, yields the better flow control.  相似文献   

4.
Melt flow control in a multistrand tundish using a turbulence inhibitor   总被引:1,自引:0,他引:1  
Water modeling and mathematical simulation techniques were used to study the melt flow under the influence of turbulence inhibitors in a multistrand bloom caster tundish. Three different cases were studied: a bare tundish (BT), a tundish with two pairs of baffles and a waved impact pad (BWIP), and a tundish equipped with turbulence inhibitor and a pair of dams (TI&D). Chemical mixing of tracer turbulence diffusion was also simulated and compared with actual experimental results. The TI&D arrangement showed an improvement of the fluid flow characteristics, yielding better tracer distribution among the outlets, lower values of back mixing flow, and higher values of plug flow. A mass transfer model coupled with k-ɛ turbulence model predicted acceptably well the experimental chemical mixing of the tracer in the water model. The water modeling and the numerical simulation indicated that the TI&D arrangement retains the tracer inside the vessel for longer times, increasing the minimum residence time. These results encourage the use of turbulence-inhibiting devices in bloom and billet casters, which pursue excellence in product quality.  相似文献   

5.
Water Modeling of Optimizing Tundish Flow Field   总被引:2,自引:1,他引:2  
 In the water modeling experiments, three cases were considered, ie, a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.  相似文献   

6.
Fluid dynamics of liquid steel in continuous casting tundishes is closely related to tundish volume and geometry, existence of flow control devices and steel flow rate. To study this complex interaction physical and mathematical models were used in the present work. The first one was based in a 1/3 scale water model with injection of tracers and the second one on the solution to the steady state-turbulent Navier-Stokes equations using the K-ε [1] approximation for the turbulent viscosity. When the tundish size is increased from 30 t to 50 t the tracer indicates a strong bypassing in the second case. The mathematical predictions indicate very high fluid velocities along the tundish bottom in agreement with the experimental findings. The employment of turbulence inhibitors promotes a counter-flow that surrounds the incoming stream jet of liquid from the inlet nozzle with steel displacing itself, after leaving this zone, along the upper free surface of the liquid. The addition of well designed baffles complements the action of the turbulence inhibitor to obtain a higher volume fraction under a plug flow pattern giving a softer flow of liquid steel. Besides, the positioning of baffles inside a tundish should be performed according to the steel flow rate.  相似文献   

7.
湍流控制装置的结构对中间包流体流动特性的影响   总被引:23,自引:2,他引:21  
通过水力学模型实验,研究了不同结构的湍流控制装置对中间包流体流动特性的影响,结果表明,湍流控制装置的几何结构对中国包流体流动特性有明显的影响,方形无顶缘和圆形无顶缘的湍流控制装置对抑制钢包注流的动能作用不大,而方形带顶缘和圆形带顶缘的湍流控制装置能够较好地改善中间包流体的流动特性,本实验采用长宽比为1.44的矩形湍流控制装置,无论其是否带有顶缘,均难以改善中间包的流动特性。  相似文献   

8.
 A detailed mathematical procedure of the optimization of the fluid flow in a tundish water model with and without flow control devices (weir and dam) was carried out using the commercial CFD code FLUENT 60. The (k ε) two equation model was used to model turbulence. The residence time distribution (RTD) curves were used to analyze the behavior of the flow in tundish. The location of flow control devices in the tundish was studied. The results show that the flow modifiers play an important role in promoting the floatation of nonmetallic inclusions in steel. Comparing the three geometric configurations that are considered (bare tundish, weir, weir+dam), the tundish equipped with the arrangement (weir+dam) is a best and optimal geometric configuration of tundish.  相似文献   

9.
薄板坯连铸中间包内抑湍器的模拟研究   总被引:3,自引:0,他引:3  
控制中间包内钢液的合理流动对夹杂物的排除有重要影响,为此建立了模拟薄板坯连铸中间包流动情况的水模型。通过测定停留时间分布(RTD)曲线,研究了不同组合控流装置对中间包流体流动特性的影响。结果表明,结构及尺寸合理的抑湍器能延长水口响应时间及平均停留时间、提高活塞流区体积分数及降低死区体积分数;抑湍器与单坝组合的控流装置在控制流体流动方面效果极佳,而抑湍器与单墙单坝、单墙双坝组合的控流装置的控流效果不太理想。  相似文献   

10.
Transient fluid flow behavior in a tundish with two different arrangements, a bare tundish and a tundish using flow control devices, was studied using physical modeling and a mathematical model. The study places special emphasis on buoyancy effects, particularly transient buoyancy effects due to step change in inlet temperature. For the bare tundish case, the inertial forces are strongly dominant, while in the arrangement using flow control devices, tundish with turbulence inhibitor and low dams, the buoyancy forces are dominant. The results were compared to those representing the real behavior, considering temperature variations, for each tundish arrangement. This comparison made possible the determination of the probable implicit error that could be present in the estimation of the fluid flow characteristic behavior used for the design of the tundish geometry and flow control devices when the temperature variations are not considered.  相似文献   

11.
板坯连铸中间包内夹杂物去除的数值模拟   总被引:1,自引:0,他引:1  
陈阳  张炯明 《钢铁研究》2014,(1):22-26,35
以某厂50tT型2流中间包为研究对象,利用大型商业软件ANSYS CFX10.0建立了三维有限体积模型,采用多相流模型对中间包内钢液的流动特性、温度分布与夹杂物去除规律进行了数值模拟,重点研究了不同堰-坝组合方式、湍流抑制器形状、拉速、夹杂物粒径等工艺参数对中间包内钢水平均停留时间、夹杂物上浮率的影响。结果表明:湍流抑制器对夹杂物的上浮去除影响不大;随着夹杂物粒径的增大,夹杂物的上浮率迅速增大;20μm以下的夹杂物则很难在中间包内上浮去除;随着拉速的增大,夹杂物的上浮率是不断减小的;采用堰A=300cm、坝B=400cm、方形瓦楞湍流抑制器、过滤器组合式控流装置时夹杂物的上浮去除效果最好。  相似文献   

12.
Fluid flow characteristics in a two‐strand slab tundish with Ar bubbling curtain were studied in water modelling experiments. It was found that the Ar bubbling curtain can greatly improve the flow characteristics in the tundish with a weir, a dam and a turbulence inhibitor. It dramatically increased the peak concentration time and plug volume and greatly decreased the dead volume, but hardly influenced the minimum residence time. Therefore, the fluid flow characteristics in a tundish with Ar bubbling curtain were favourable to the flotation and separation of inclusions from molten steel. The flow characteristics with low gas flow rate and short distance of the Ar bubbling curtain from the tundish outlet were better than those with high gas flow rate and large distance of the curtain from the outlet.  相似文献   

13.
连铸中间包湍流控制器水模实验研究   总被引:7,自引:2,他引:5  
张立  黄耀文  杨时标  钟良才  朱英雄  金培洪 《钢铁》2002,37(12):17-18,32
通过水模实验,研究了湍流控制器对连铸中间包流体流动的影响。合理结构的湍流控制器能够改善中间包流体流动特性,最小停留时间增加,活塞流体积提高,死区体积下降。实验观察发现,中间包采用湍流控制器后,在两块上渣堰之间的液面流动平稳,可以减少卷渣现象。  相似文献   

14.
 中间包内设置控流装置对钢水流动行为和夹杂物去除影响显著。采用物理模拟的方法,系统研究和比较了常规双挡墙、湍流控制器、导流挡板和透气砖吹氩对中间包流体流动特征的影响。结果表明,湍流控制器可起到减小钢水喷溅、防止二次氧化和改善流体运动路线的作用,并减少短路流的发生。导流挡板与双挡墙比较,最短停留时间变化不大,但死区体积更小。与双挡墙相比,透气砖吹氩的最短停留时间提高不多,但峰值时间增加明显,死区体积大大降低。  相似文献   

15.
The paper shows the results of the research obtained by physical and mathematical modeling of steel flow and mixing in the tundish. Two‐strand continuous casting tundish was under consideration. It has been working in one of polish steel plants. The change of concast slab assortment was caused by the changeable market terms. So, the tundish with the new system of steel flow controller was needed. Up to now baffles with the notch have played this role. Their placement cause the excessive consumption of the lining of the tundish front line. As a consequence the turbulence inhibitor (TI) was applied. Four different types of this inhibitor were designed. As a result of the experimental measurements and numerical simulations, the RTD curves of F‐type were obtained. Basing on these curves time constants for examined types were determined. Additionally, the research results were complemented by the E‐type curves. The percentage participations of dead volume flow, dispersed plug flow, and well‐mixed volume flow were calculated. The research gives possibility to estimate the designed TIs and their influence on the tundish work.  相似文献   

16.
刘艳贺  贺铸  刘双  李黎 《特殊钢》2013,34(5):5-8
通过计算流体力学软件FLUENT建立的数学模型对钢厂200 mm×1 600 mm铸坯二流T型23 t中间包现挡墙和坝、湍流控制器和坝、湍流控制器和现挡墙以及新挡墙4种结构方案进行三维数值模拟,研究原中间包及安装不同控流装置后的钢水流动特性。结果表明,在所有的设计方案中安装有湍流控制器和坝的中间包能够达到最佳优化效果;中间包的死区体积分率由30.18%降到16.51%,活塞流区与死区的体积分率比RVp/Vd由55.80%增大到129.44%;中间包内流动稳定,有利于夹杂物的上浮。  相似文献   

17.
四流矩形中间包冲击碗应用水模实验研究   总被引:3,自引:0,他引:3  
通过四流矩形中间包水模实验,研究了不同结构的冲击碗与不同控流装置的组合对中间包流动特性的影响,并比较了有无冲击碗对中间包流动特性的影响。合理使用适当结构的冲击碗能大大延长近中心流的响应时间,改善各流的流动特性的差异,提高平均停留时间和平均活塞区体积。冲击碗与单坝组合控流效果较好,而冲击碗与单墙单坝组合控流效果较差。提出了针对四流矩形中间包控流装置的优化设计方案。  相似文献   

18.
采用1:3水模型实验对钢厂的八流150 mm×150 mm坯连铸不同控流结构80 t中间包内钢液流场进行了研究,并通过数值模拟进行验证。研究结果表明,中间包仅加湍流抑制器后对改善钢液的流动效果不明显,加上"V"型挡墙后能明显改善各流流动特性,湍流抑制器、"V"型挡墙和单坝组合能进一步提高各流的流动特性一致性,平均停留时间增大到505.22 s,在挡坝的两侧分别形成了明显的环流区。将单挡坝改为双挡坝后,Vp/Vd平均由原来1.77提高到2.63,死区比例平均也减少了6.0%,且各水口的稳定性最好,各流RTD曲线吻合度也最好,且存在3个大环流区和1个小环流区,水模型实验与数值模拟结果一致。  相似文献   

19.
Simple changes on tundish geometry may lead to significant improvements of transport phenomena of liquid steel in tundishes. In the present case steel flow in a six‐strand billet trough type tundish is mathematically simulated. Numerical results indicate the existence of a high fluid turbulence in the pouring zone and recirculating flows. Steel temperatures in the strands are also different, which from practice it would mean different qualities of billet among the strands. A simple change of design by widening the pouring box improves all the steel flow characteristics. First the turbulence in the pouring box is decreased, the recirculating flows are eliminated and steel temperatures in the six strands become closer to each other. Using a computational technique known as volume of fluid, surface topography of bath including the covering slag was simulated for both types of tundishes. These simulations predicted an open eye of the slag layer for the first tundish while in the second this phenomena was avoided. Thus, it was demonstrated the original hypothesis that small changes in tundish design may lead to a more controlled steel flow.  相似文献   

20.
建立了中间包内钢液-夹杂物两相流对耐火材料冲蚀的数学模型,并对设置有湍流控制器、挡渣堰、挡渣坝中间包耐火材料的冲蚀特性进行了数值模拟计算。计算结果表明,中间包内冲蚀率最大的位置在湍流控制器内,其次是注入区近渣线处包壁、挡渣堰与挡渣坝迎向钢液流动一侧壁面,其他区域耐火材料的冲蚀很小,可以忽略不计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号