首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past few decades, global demand for renewable energy has been rising steadily. To meet this demand, there has been an exponential growth in size of wind turbines (WTs) to capture more energy from wind. Consequent increase in weight and flexibility of WT components has led to increased structural loading, affecting reliability of these wind energy conversion systems. Spatio-temporal variation of rotor effective wind field acts as a disturbance to a WT system, hence, necessitating controllers that can cancel this disturbance. Additionally, assumptions made in extracting linear models for controller design lead to modeling errors resulting from changing operating conditions. Previous attempts have proposed robust controllers incorporating wind disturbance models. However, these controllers have been evaluated on smaller WTs, which experience lower structural loading than larger ones. Additionally, a majority these controllers are based on collective pitch control (CPC), hence do not address loading in the blades. To address these challenges, this contribution proposes an independent pitch-based robust disturbance accommodating controller (IPC-RDAC) for reducing structural loads and regulating generator speed in utility-scale WTs. The proposed controller is designed using -synthesis approach and is evaluated on the 5 MW National Renewable Energy Laboratory (NREL) reference WT. Its performance is evaluated against a gain-scheduled proportional integral (GSPI)-based reference open-source controller (ROSCO) and a CPC-based RDAC (CPC-RDAC) controller, developed previously by the authors. Simulation results for various wind conditions show that the proposed controller offers improved performance in blade and tower load mitigation, as well a generator speed regulation.  相似文献   

2.
M. Hung Do  Dirk Sffker 《风能》2022,25(1):107-124
Disturbance accommodating control (DAC) has been developed in the last decades for wind turbines to control the rotor/generator speed and to reduce structural loads. The method allows accommodating unknown disturbance effects by using the combination of disturbance observers and disturbance rejection controllers. The actual main problem of DAC is to define suitable disturbance observer and controller gain matrices to achieve the desired overall performance including turbine speed regulation in combination with structural load mitigation. The disturbance rejection controller is often designed and tuned separately for individual applications and operating conditions. The closed-loop system stability and uncertainties due to the use of the linearized reduced-order model in controller synthesis procedure are not fully considered. This paper introduces a method to design DAC by optimizing the observer and controller parameters simultaneously to guarantee system performance respecting to structural loads mitigation, power regulation, and robustness. To eliminate the rotor speed control steady-state error due to model uncertainties, partial integral action is included. Simulation results using NREL reference wind turbine models show that the proposed method successfully regulates the rotor speed without error despite the presence of the model uncertainties. Structural loads are also reduced using proposed method compared to DAC designed by Kronecker product method. The proposed approach is able to define a stable and robust DAC controller by solving a non-smooth H optimization problem with structure and stability constraints.  相似文献   

3.
The non‐linear behaviour of wind turbines demands control strategies that guarantee the robustness of the closed‐loop system. Linear parameter‐varying (LPV) controllers adapt their dynamics to the system operating points, and the robustness of the closed loop is guaranteed in the controller design process. An LPV collective pitch controller has been developed within this work to regulate the generator speed in the above rated power production control zone. The performance of this LPV controller has been compared with two baseline control strategies previously designed, on the basis of classical gain scheduling methods and linear time‐invariant robust H controllers. The synthesis of the LPV controller is based on the solution of a linear matrix inequalities system, proposed in a mixed‐sensitivity control scenario where not only weight functions are used but also an LPV model of the wind turbine is necessary. As a contribution, the LPV model used is derived from a family of linear models extracted from the linearization process of the wind turbine non‐linear model. The offshore wind turbine of 5 MW defined in the Upwind European project is the used reference non‐linear model, and it has been modelled using the GH Bladed 4.0 software package. The designed LPV controller has been validated in GH Bladed, and an exhaustive analysis has been carried out to calculate fatigue load reductions on wind turbine components, as well as to analyse the load mitigation in some extreme cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Structural loads of wind turbines are becoming critical because of the growing size of wind turbines in combination with the required dynamic output demands. Wind turbine tower and blades are therefore affected by structural loads. To mitigate the loads while maintaining other desired conditions such as the optimization of power generated or the regulation of rotor speed, advanced control schemes have been developed during the last decade. However, conflict and trade‐off between structural load reduction capacity of the controllers and other goals arise; when trying to reduce the structural loads, the power production or regulation performance may be also reduced. Suitable measures are needed when designing controllers to evaluate the control performance with respect to the conflicting control goals. Existing measures for structural loads only consider the loads without referring to the relationship between loads and other control performance aspects. In this contribution, the conflicts are clearly defined and expressed to evaluate the effectiveness of control methods by introducing novel measures. New measures considering structural loads, power production, and regulation to prove the control performance and to formulate criteria for controller design are proposed. The proposed measures allow graphical illustration and numerical criteria describing conflicting control goals and the relationship between goals. Two control approaches for wind turbines, PI and observer‐based state feedback, are defined and used to illustrate and to compare the newly introduced measures. The results are obtained by simulation using Fatigue, Aerodynamics, Structures, and Turbulence (FAST) tool, developed by the National Renewable Energy Laboratory (NREL), USA.  相似文献   

5.
The estimation of fatigue lifetime for an offshore wind turbine support structure requires a large number of time‐domain simulations. It is an important question whether it is possible to reduce the number of load cases while retaining a high level of accuracy of the results. We present a novel method for simplified fatigue load assessments based on statistical regression models that estimate fatigue damage during power production. The main idea is to predict the total fatigue damage only and not also the individual damage values for each load case. We demonstrate the method for a jacket‐type support structure. Reducing the number of simulated load cases from 21 to 3, the total fatigue damage estimate exhibited a maximum error of about 6% compared with the complete assessment. As a consequence, a significant amount of simulation time can be saved, in the order of a factor of seven. This quick fatigue assessment is especially interesting in the application of structural optimization, with a large number of iterations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
为满足分布式电网发展要求,提高小型风力机风能利用率,防止大风条件损坏风力发电设备,文章设计了一种应用于小型风力机的新型主动统一变桨调节装置。文章介绍了装置的基本构造与工作原理,利用熔融沉积3D打印技术制作小比例模型验证了变桨装置的可行性,并通过数值模拟方法对功率输出性能及风轮载荷进行了模拟分析。模拟结果表明:通过适当调节桨距角大小,可有效控制风力机输出功率保持在额定功率值附近,且高转速条件下增大桨距角对功率输出性能有较强抑制作用;叶片应力集中区域主要在叶根及叶片中部靠近前缘部位,在功率调控过程中,随着桨距角与风速的增加,应力集中区域由叶中向叶根转移,最大应力值总体呈下降趋势。  相似文献   

8.
In this article, the conventional individual pitch control (IPC) strategy for wind turbines is reviewed, and a linear IPC strategy for two‐bladed wind turbines is proposed. The typical approach of IPC for three‐bladed rotors involves a multi‐blade coordinate (MBC) transformation, which transforms measured blade load signals, i.e., signals measured in a rotating frame of reference, to signals in a fixed non‐rotating frame of reference. The fixed non‐rotating signals, in the so‐called yaw and tilt direction, are decoupled by the MBC transformation, such that single‐input single‐output (SISO) control design is possible. Then, SISO controllers designed for the yaw and tilt directions provide pitch signals in the non‐rotating frame of reference, which are then reverse transformed to the rotating frame of reference so as to obtain the desired pitch actuator signals. For three‐bladed rotors, the aforementioned method is a proven strategy to significantly reduce fatigue loadings on pitch controlled wind turbines. The same MBC transformation and approach can be applied to two‐bladed rotors, which also results in significant load reductions. However, for two‐bladed rotors, this MBC transformation is singular and therefore, not uniquely defined. For that reason, a linear non‐singular coordinate transformation is proposed for IPC of two‐bladed wind turbines. This transformation only requires a single control loop to reduce the once‐per‐revolution rotating blade loads (‘1P’ loads). Moreover, all harmonics (2P, 3P, etc.) in the rotating blade loads can be accounted for with only two control loops. As in the case of the MBC transformation, also the linear coordinate transformation decouples the control loops to allow for SISO control design. High fidelity simulation studies on a two‐bladed wind turbine without a teetering hub prove the effectiveness of the concept. The simulation study indicates that IPC based on the linear coordinate transformation provides similar load reductions and requires similar pitch actuation compared with the conventional IPC approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
风电机组载荷计算的外部风速条件模拟研究   总被引:1,自引:0,他引:1  
针对大型风力发电机组设计中的风速条件进行了模拟研究,利用Bladed软件进行了仿真和载荷计算,研究内容包括风切变、塔影、上风向尾流、三维湍流、瞬时风速等建模问题.结合沈阳工业大学承担"863"项目--SUT-1000 MW级变速恒频风电机组的研制,进行了IEC标准下各级负载级别的载荷计算.  相似文献   

10.
As the penetration of wind energy in worldwide electrical utility grids increases, there is a growing interest in the provision of active power control (APC) services from wind turbines and power plants to aid in maintaining grid stability. Recent research has focused on the design of active power controllers for wind turbines that can provide a range of APC services including inertial, primary frequency and secondary frequency control. An important consideration for implementing these controllers in practice is assessing their impact on the lifetime of wind turbine components. In this paper, the impact on the structural loads of a wind turbine providing a power reserve is explored by performing a load suite analysis for several torque‐based control strategies. Power reserve is required for providing those APC services that require the ability of the wind turbine to supply an increase in power. To study this, we performed a load suite on a simulated model of a research turbine located at the National Wind Technology Center at the National Renewable Energy Laboratory. Analysis of the results explores the effect of the different reserve strategies on turbine loading. In addition, field‐test data from the turbine itself are presented to augment and support the findings from the simulation study results. Results indicate that all power‐reserve strategies tend to decrease extreme loads and increase pitch actuation. Fatigue loads tend to be reduced in faster winds and increased in slower winds, but are dependent on reserve‐controller design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This article deals with nonlinear model‐based control design for wind turbines. By systematically integrating several mechanical degrees of freedom in the control design model, the load mitigation potential from the proposed multivariable control framework is demonstrated. The application of the linear matrix inequality (LMI)‐based control design is discussed in detail. Apart from the commonly considered power production mode, an extended operating range to provide stabilization of the electrical grid through power tracking is considered. This control functionality allows for an evaluation of the resulting fatigue and ultimate loads for power tracking at different dynamic requirements. The results indicate that under the impact of a dedicated control scheme, this functionality is feasible with respect to the occurring loads and operational behavior of the wind turbine.  相似文献   

12.
This paper deals with the problem of wind turbine tower damping control design and implementation in situations where the support structure parameters vary from their nominal design values. Such situations can, in practice, occur for onshore and especially offshore wind turbines and are attributed to aging, turbine installation, scour or marine sand dunes phenomena and biofouling. Practical experience of wind turbine manufacturing industry has shown that such effects are most easily quantified in terms of the first natural frequency of the turbine support structure. The paper brings forward a study regarding the amount to which nominal tower damping controller performance is affected by changes in the turbine natural frequency. Subsequently, an adaptive tower damping control loop is designed using linear parameter‐varying control synthesis; the proposed tower damping controller depends on this varying parameter which is assumed throughout the study to be readily available. An investigation of the fatigue load reduction performance in comparison with the original tower damping control approach is given for a generic three‐bladed horizontal‐axis wind turbine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A wind turbine generator (WTG) system's output is not constant and fluctuates depending on wind conditions. Fluctuating power causes frequency deviations and adverse effects to an isolated power system when large output power from WTG systems is penetrated in the power system. This paper presents an output power control methodology of a WTG for frequency control using a load power estimator. The load power is estimated by a disturbance observer, and the output power command of the WTG is determined according to the estimated load. Besides, the WTG can also be controlled during wind turbulence since the output power command is determined by considering wind conditions. The reduction of the power system frequency deviation by using the WTG can be achieved by the proposed method. The effectiveness of the proposed method is validated by numerical simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The present work considers the application to a medium‐size onshore wind turbine of passive load mitigation technologies, first individually and then integrated together. The study is conducted with the help of a comprehensive automated design optimization procedure, which eases the generation and comparison of consistent solutions, each satisfying the same overall requirements. Passive load mitigation is here obtained by inducing bend‐twist coupling to the blades. The coupling is generated by rotating the fibers of anisotropic laminates, by the aerodynamic sweeping of the blade and by offsetting the spar caps in opposite directions on the pressure and suction sides. The first two solutions yield significant benefits, while the third, for this particular wind turbine, is ineffective. In addition, the typical power losses associated with bend‐twist coupled blades are reduced by a novel regulation strategy that varies the fine pitch setting in the partial load region. After having considered each load mitigation technology by itself, fiber rotation and sweeping are combined together and used to design a rotor with a larger swept area. The final design generates cost of energy savings thanks to a large‐diameter, highly coned, soft‐in‐bending rotor that results in lower turbine costs and a higher energy capture compared with the baseline design.  相似文献   

15.
As the size of wind turbines increases, the load alleviating capabilities of the turbine controller are becoming increasingly important. Load alleviating control schemes have traditionally been based on feedback from load sensor; however, recent developments of measurement technologies have enabled control on the basis of preview measurements of the inflow acquired using, e.g., light detection and ranging. The potential of alleviating load variations that are caused by mean wind speed changes through feed‐forward control have been demonstrated through both experiments and simulations in several studies, whereas the potential of preview control for alleviating the load variations caused by azimuth dependent inflow variations is less described. Individual or cyclic pitch is required to alleviate azimuth dependent load variations and is traditionally applied through feedback control of the blade root loads. In many existing studies, the performance of an advanced controller is compared with the performance of a simpler controller. In this study, the effect of three measurement types on the load alleviating performance of the same cyclic pitch control design is studied. By using a baseline cyclic pitch controller as test bench, the effect of the different measurement types on the controller performance can be assessed independent of control design. The three measurement types that are considered in this study are as follows: blade root out‐of‐plane bending moment, on‐blade measurements of angle of attack and relative velocity at a radial position of the blades, and upstream inflow measurements from a spinner mounted light detection and ranging (LiDAR) sensor that enables preview of the incoming flow field. The results show that for stationary inflow conditions, the three different measurement types yield similar load reductions, but for varying inflow conditions, the LiDAR sensor‐based controller yields larger load reductions than the two others. The results also show that the performance of the LiDAR sensor‐based controller is very sensitive to uncertainties relating to the inflow estimation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
J. M. Tavares  P. Patrício 《风能》2020,23(4):1077-1084
According to the centenary Betz‐Joukowsky law, the power extracted from a wind turbine in open flow cannot exceed 16/27 of the wind transported kinetic energy rate. This limit is usually interpreted as an absolute theoretical upper bound for the power coefficient of all wind turbines, but it was derived in the special case of incompressible fluids. Following the same steps of Betz classical derivation, we model the turbine as an actuator disk in a one dimensional fluid flow but consider the general case of a compressible reversible fluid, such as air. In doing so, we are obliged to use not only the laws of mechanics but also and explicitly the laws of thermodynamics. We show that the power coefficient depends on the inlet wind Mach number , and that its maximum value exceeds the Betz‐Joukowsky limit. We have developed a series expansion for the maximum power coefficient in powers of the Mach number that unifies all the cases (compressible and incompressible) in the same simple expression: .  相似文献   

17.
This paper presents a numerical investigation of the smart load control on an Upwind/NREL 5 MW reference wind turbine under the IEC extreme wind shear (EWS) condition utilizing newly developed aero-servo-elastic platform. The control action was implemented through the local perturbation of a deformable trailing edge flap (DTEF) per blade, which was driven by a smart rotor system, based on the FAST/Aerodyn and Matlab/Simulink codes. Results showed that, compared with the original collective pitch control method, the aerodynamic load in terms of blade flapwise root moment and tip deflection were effectively reduced. Furthermore, the smart rotor control also positively affected other components of the drive-chain as well as generator power and pitch system. It was found that the smart control effect altered the nature of the flow-blade interactions and changed the in-phased fluid-structure synchronization into much weaker couplings. As a result, the damping of the fluid-blade system was significantly enhanced, leading to great attenuation in the EWS load on both rotor and other drive-chain components.  相似文献   

18.
The application of structural control to offshore wind turbines (OWTs) using tuned mass dampers (TMDs) has shown to be effective in reducing the system loads. The parameters of a magnetorheological (MR) damper modeled by the Bouc‐Wen model are modified to utilize it as a damping device of the TMD. Rather than showcasing the intricate design policy, this research focuses on the availability of the MR damper model on TMDs and its significance on structural control. The impact of passive and semiactive (S‐A) TMDs applied to both fixed bottom and floating OWTs is evaluated under the fatigue limit state (FLS) and the ultimate limit state (ULS). Different S‐A control logics based on the ground hook (GH) control policy are implemented, and the frequency response of each algorithm is investigated. It is shown that the performance of each algorithm varies according to the load conditions such as a normal operation and an extreme case. Fully coupled time domain simulations are conducted through a newly developed simulation tool, integrated into FASTv8. Compared with the passive TMD, it is shown that the S‐A TMD results in higher load reductions with smaller strokes under both the FLS and the ULS conditions. The S‐A TMD using displacement‐based GH control is capable of reducing the fore‐aft and side‐to‐side damage equivalent loads for the monopile by approximately 12% and 64%, respectively. The ultimate loadings at the tower base for the floating substructure are reduced by 9% with the S‐A TMD followed by inverse velocity‐based GH control (IVB‐GH).  相似文献   

19.
In this work, a micro wind turbine will be designed and built for a series of wind tunnel tests (rotor dynamics and Wind Turbine (WT) start-up velocity). Its design stems from an original numerical code, developed by the authors, based on the Blade Element Momentum (BEM) Theory.  相似文献   

20.
The aim of the present paper is to obtain a better understanding of the stability properties of wakes generated by wind turbine rotors. To accomplish this, a numerical study on the stability of the tip vortices of the Tjaereborg wind turbine has been carried out. The numerical model is based on large eddy simulations of the Navier–Stokes equations using the actuator line method to generate the wake and the tip vortices. To determine critical frequencies, the flow is disturbed by inserting harmonic perturbations, giving rise to spatially developing instabilities. The results show that the instability is dispersive and that growth arises only for some specific frequencies and type of modes, in agreement with previous instability studies. The result indicates two types of modes; one where oscillations of neighboring vortex spirals are out of phase and one where oscillations in every vortex spiral in phase. The mode with spirals out of phase results in the largest growth with the main extension of the disturbance waves in radial and downstream directions. The out‐of‐phase disturbance leads to vortex pairing once the development leaves the linear stage. The study also provides evidence of a relationship between the turbulence intensity and the length of the near wake. The relationship, however, needs to be calibrated against measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号