首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
国外水性聚氨酯研究新进展   总被引:21,自引:4,他引:21  
本文系统地介绍了近年来国外关于水性聚氨酯的制备、性能、应用以及改性的研究状况。  相似文献   

2.
Interpenetrating Polymer Networks, from glycerol modified linseed oil polyurethanes and cardanol-based dyes, which are yet to be extensively studied were synthesized using benzoyl peroxide as initiator and ethylene glycol dimethacrylate as cross-linker. These polymers were characterized by Fourier transform infrared spectra, thermal analysis techniques such as thermogravimetric analysis, derivative thermogravimetry and differential thermal analysis. The kinetic parameters such as activation energy and orders of reaction were ascertained using Freeman-Carroll and Freeman-Anderson methods. The effects of changes in polyurethane to dye monomer weight ratio on the properties of such polymers were investigated at 1.2 and 1.6 NCO/OH ratios.  相似文献   

3.
Resol was solution blended with vinyl acetate‐2‐ethylhexylacrylate (VAc–EHA) resin in an aqueous medium at a 90‐10 w/w ratio with hexamethoxymethylmelamine (HMMM) as crosslinker. Here we aimed to study the impact behavior of unidirectional laminates cast from (Resol/VAc–EHA/HMMM)/glass fiber (GF), (Resol/VAc–EHA/HMMM)/polyethylene fiber (PEF), and (Resol/VAc–EHA/HMMM)/GF/PEF (hybrid) and to study the role of PEF ply/plies in hybrid laminates toward the impact behavior, as dependent on the relative position of the ply/plies. A brittle failure mode was observed in the GF‐reinforced laminates, which tended to the ductile failure mode, with the incorporation of PEF ply/plies. Again, the impact fracture mode of GF was minimized by the placement of PEF ply/plies at the impacted side of the hybrid laminates. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 339–342, 2004  相似文献   

4.
Polyurethanes were prepared from toluene diisocyanate (TDI), 1-4-butane diol (BDO) and polycaprolactone-based triols with varying molecular weights. Among each molecular weight triol-based urethane, hard segment content was varied from 20% to 70%. Differential scanning calorimetry, tensile testing, and Iosipescu shear testing were done on all the various urethanes prepared. Thermal characterization data revealed the dependence of phase separation on hard segment content as well as on the triol molecular weight. Tensile data and Iosipescu shear data further confirmed the observations made from the DSC data. The data further indicated that phase separation can greatly improve the modulus of cross-linked segmented urethanes. Adhesion of these urethanes to glass surface was evaluated using soda-lime float glass plate. Urethane samples were cast on the air side of the glass plates and adhesion was measured in shear mode. Adhesion data indicated that in addition to hard segment content, modulus, cross-link density, and molecular weight of the triols, phase separation seems to be a major factor in controlling adhesion. Surfaces of the failed adhesion samples were also analyzed and the failure mode was found to be cohesive, in varying degree, with the different urethane systems.  相似文献   

5.
Taeyi Choi  Ajay Padsalgikar 《Polymer》2010,51(19):4375-872
Segmented polyurethane (PU) block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol as hard segments and oligomeric ethoxypropyl polydimethylsiloxane (PDMS) as the soft segments, with hard segment contents ranging from 26 to 52 wt%. The microphase separated morphology, phase transitions, and degrees of phase separation of these novel copolymers were investigated using a variety of experimental methods. Like similar copolymers with mixed ethoxypropyl PDMS/poly(hexamethylene oxide) soft segments, PU copolymers containing only ethoxypropyl PDMS soft segments were found to consist of three microphases: a PDMS matrix phase, hard domains, and a mixed phase containing ethoxypropyl end group segments and dissolved short hard segments. Analysis of unlike segment demixing using small-angle X-ray scattering demonstrates that degrees of phase separation increase significantly as copolymer hard segment content increases, in keeping with findings from Fourier transform infrared spectroscopy measurements.  相似文献   

6.
An interpenetrating polymer network (IPN) based on poly(ethyl methacrylate) (PEMA) and carboxylated nitrile rubber was synthesized. Peroxide crosslinked XNBR was swollen in ethyl methacrylate containing benzoyl peroxide as initiator and tetraethylene glycol dimethacrylate as crosslinking agent. A full and sequential IPN is formed by the two independently crosslinked phases of XNBR and PEMA. Dynamic mechanical analysis of the 50/50 XNBR/PEMA IPN shows a single, broad peak whereas a 50/50 blend shows two distinct peaks, indicating the pinning down of a microheterogeneous structure during the IPN formation rather that macrophase separation as in blends. SEM analysis confirms the development of a cocontinuous intimate structure of the IPN. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1487–1491, 2005  相似文献   

7.
Interpenetrating polymer systems based on crosslinked polyurethane (PU) and polystyrene (PS) were prepared at room temperature by a one‐shot (in situ) method, starting from an initial homogeneous mixture of reagents via noninterfering mechanisms. Both polymerizations were performed either simultaneously or one after the other. True simultaneity at every stages of the process is not possible. Despite the difference in refractive index of the components, hazy or optically clear films were obtained, thus indicating various levels of phase separation, also confirmed by glass transition temperature (Tg) measurements. The results suggest that controlling the chemistry and process (crosslink density, composition, and time sequence of events) of in situ interpenetrating network formation will give various morphologies, and hence properties, ranging from microphase separated materials to larger macrophase separated materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
Typical polyHIPE (porous polymers from high internal phase emulsions) have a cellular structure with volume fractions from 0.2 to 0.04, cell diameters from 15 to 25 μm and intercellular pore diameters from 0.5 to 10 μm. Unique interpenetrating polymer networks synthesized within the polyHIPE exhibited enhanced mechanical properties and an extended temperature range for damping. Hybrid polyHIPE that combine an inorganic polysilsesquioxane network with an organic polystyrene network exhibited superior high temperature mechanical properties and enhanced thermal stability. A nanoscale porosity in the cell walls, produced through the addition of a porogen to the HIPE, reduced the density and significantly enhanced the specific surface area. Porous silica monoliths with silica volume fractions of as low as 0.02 were produced through the pyrolysis of hybrid polyHIPE. PolyHIPE coated with an intrinsically conducting polymer exhibited reversible and repeatable changes in conductivity on exposure to acetone vapor, demonstrating their potential as sensor materials.  相似文献   

9.
Morphology development during the synthesis at room temperature of an interpenetrating polyurethane/poly(methyl methacrylate) network was investigated by small-angle X-ray scattering in relation with their relative kinetics of formation, determined by Fourier transform infra red spectroscopy. When the time lag between the onset of the two reactions is short, macroscopic phase separation occurs as the polyurethane network is incompletely formed. However, when the time lag increases, the poly(methyl methacrylate) forms into a more continuous network which limits the growth of phase separation to a close environment.  相似文献   

10.
Ying Li  Qi Dong  Zhi-Qiang Fan 《Polymer》2009,50(21):5134-1792
The morphology of two polypropylene/poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys prepared by multi-stage sequential polymerization (MSSP) and two-stage polymerization (TSP) processes, respectively, was investigated. It is observed that the alloy prepared by MSSP (sample 1) exhibits lower phase separation temperature than the alloy prepared by TSP (sample 2), probably due to the higher content of PP segments in the blocky copolymer fractions of sample 1. Two thermal treatments were applied to the samples: (1) The samples were directly quenched from 230 °C to 132 °C for isothermal crystallization; (2) The samples were firstly held at 160 °C for 60 min for phase separation and then cooled to 132 °C for crystallization. It is found that both microstructure and thermal treatment affect the morphology of the alloys, and the differences in morphology are interpreted in terms of phase diagram. For sample 1 and for the samples subjected to phase separation prior to crystallization, the EPR-rich phase contains more PP and thus is more viscous, which leads to more inclusion of the EPR-rich phase into the spherulites. A coarse spherulitic structure is formed due to crystallization of PP in the included EPR-rich phase. More included EPR-rich phase and its stronger crystallizability can further lead to the narrower boundaries and formation of connections between the adjacent spherulites.  相似文献   

11.
以异佛尔酮二异氰酸酯(IPDI)、1,6-己二异氰酸酯(HDI)和聚四氢呋喃醚二醇(PTMG)、聚碳酸-1,6-己二醇酯二醇(PCDL)、聚己二酸-1,6-己二醇酯二醇(PHA)为原料,采用预聚体法合成了一系列水性聚氨酯(WPU)乳液。通过红外光谱(IR)、热重(TGA)、X-射线衍射(XRD)、动态机械性能(DMA)和拉伸测试等方法研究不同多元醇对所合成的WPU薄膜软、硬段微相分离及其热性能、结晶性和机械性能影响。结果表明,氢键作用对WPU的微相分离有明显影响;微相分离程度大的聚醚型WPU热稳定性、结晶性、柔韧性、低温塑性比微相分离程度小的聚碳酸酯型WPU好;聚碳酸酯型WPU膜的拉伸强度和模量更大。  相似文献   

12.
Segmented copolyurethanes comprising 40-60% by weight of polyurethane hard segments (HS) and polyether soft-segment (SS) with different functionalities (SS-fn), have been formed by reaction injection moulding (RIM). The HS were formed from 4,4′ diphenylmethane diisocyanate (MDI) reacted with ethane diol (ED). The three SS-prepolymers used were all hydroxyl-functionalised poly(oxypropylene-b-oxyethylene)s with different nominal functionalities (fn) of 2, 3 and 4 but with a constant molar mass per functional group of ∼2000 g mol−1. RIM materials were characterised using differential scanning calorimetry, dynamic mechanical thermal analysis, tensile stress-strain and single-edge notch fracture studies. Predictions using a statistical model of the RIM-copolymerisation showed that increasing SS-fn lead to more rapid development of copolymer molar mass with isocyanate conversion. Experimentally, the RIM-PU exhibited a wide range of mechanical behaviour resulting from differences in molecular and morphological structures. Increasing SS-fn produced materials with improved mould release behaviour and fracture resistance. However, increasing SS-fn also reduced the degree of phase separation developed in the copolyurethanes, resulting in increased modulus-temperature dependence and poorer tensile properties.  相似文献   

13.
以异佛尔酮二异氰酸酯(IPDI)、聚氧化丙烯二醇(PPG-220)、二羟甲基丙酸(DMPA)、蓖麻油(C0)等为主要原料,合成交联型水性聚氨酯乳液,在此乳液中加入丙烯酰胺、引发剂(KPS),交联剂(BMA)进行自由基聚合,制备具有IPN结构的聚氨酯-聚丙烯酰胺(PU—PAAm)水凝胶。研究了(PU—PAAm)水凝胶溶胀率(SR)受pH值、温度(T)、交联剂用量等因素的影响。  相似文献   

14.
Waterborne polyurethanes based on isophorone diisocyanate and two different soft segments, poly(1,4-butylene adipate) and poly(propylene glycol), were end-capped with (3-aminopropyl) triethoxysilane to impart them the ability to crosslink at room temperature. Polyurethanes were synthesized by means of acetone process and stabilized in aqueous medium using dimethylolpropionic acid (DMTA) as internal emulsifier. 13C NMR experiments confirmed the insertion of the alkoxysilane. The adhesion properties of the room temperature cured films as a function of alkoxysilane concentration were evaluated. The optimum film formation time and adhesion temperatures were established using the design of experiments (DOE) methodology. The Lap Shear adhesion increased as a function of the alkoxysilane content up to a point, 9.7 wt.% of alkoxysilane, where the adhesion capacity disappeared totally due to the rigidity of the material. Furthermore, both polyester and polyether based systems presented an optimum window, between 5 and 15 wt.% of alkoxysilane, where the synthesized systems promoted good adhesion at high temperatures above 200 °C for more than 24 h.  相似文献   

15.
Interpenetrating polymer networks (IPNs) based on poly(propylene glycol) (PPG) and poly(acrylic acid) (PAAc) were prepared by UV irradiation and characterized using fourier transform infrared (FTIR), differential scanning calorimetry (DSC), dielectric analysis (DEA), and thermogaravimetry (TGA). The glass transition temperatures (Tgs) of these IPNs exhibited a relatively higher temperature with an increased PAAc content. The decomposition temperature of PAAc is lower than that of PPG. PAAc affects the thermal stability of IPN more than PPG. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2570–2574, 2003  相似文献   

16.
Castor oil was transesterified with pentaerythritol thereby introducing reactive hydroxyl groups. The method of matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy was used to determine the components of the castor oil pentaerythritol alcoholysis products. Simultaneous interpenetrating polymer networks of pentaerythritol modified castor oil and diphenyl-methane 4-4′ diisocyanate polyurethane (P1-CO-PU) and polystyrene (PS) were synthesized using benzoyl peroxide as the initiator and divinyl benzene as the crosslinker. The effect of PU/PS composition on the morphology, miscibility and physical properties of the resulting IPNs was investigated by scanning electron microscopy, dynamic mechanical thermal analysis, measurements of mechanical properties and resistance to chemical reagents. The patterns of the extent of the phase separation and the characteristics of the interpenetration reached as a function of the components were deduced.  相似文献   

17.
The effects of the PMMA content and the cross‐linker level in the poly(methylmethacrylate) component on the dynamic and physico‐mechanical properties of semi‐2 interpenetrating polymer networks based on natural rubber and poly(methylmethacrylate) were determined. The miscibility of the components in these semi‐2 interpenetrating polymer networks was determined using the loss tangent data, obtained from dynamic mechanical thermal analysis and the interphase contents were calculated from modulated scanning calorimetric data. Some component mixing in these semi‐2 interpenetrating polymer networks was evident from these modulated differential scanning calorimetric and dynamic mechanical thermal analysis data. The degree of component mixing increased with cross‐linker level in the PMMA phase. The PMMA content in the semi‐2 IPNs has a significant effect on the tensile and hysteresis behavior of these semi‐2 interpenetrating polymer networks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The nucleation and crystallization of glass-ceramics are typically influenced by early phase separation, which can impact glass properties. However, it has been challenging to characterize the nanoscale phase separation and understand the nucleation mechanism of lithium disilicate (L2S) glass-ceramics, which has resulted in some controversy. Here, we raised the direct evidence of nanoscale clustering in the glassy phase prior to formal nucleation and crystallization by element distribution. Firstly, the amorphous Li3PO4 phase formed on the boundary between the phase separation area and residual glass matrix, and then nucleation tended to start on this phase boundary. Furthermore, the effect of phase-separation on nucleation and final crystallize products was illustrated. By sufficient phase-separation, the formation of desired Li2Si2O5 and LiAlSi4O10 microcrystals was effectively motivated, which is prerequisite for high mechanical properties and transparency. We hope this work provides guidance to rationally understand the early phase separation in glass for subsequent controlling crystallization.  相似文献   

19.
Surface free energies of polyurethanes made from toluene diisocyanate and 1, 4 butanediol-based hard segments and caprolactone polyol-based soft segments were calculated using additive functions. Good agreement was found between the calculated values based on additive functions and the calculated values based on contact angle measurements. The phase-separated polyurethanes were found to have a higher polar surface free energy component (γP). This was linked to the preferential segregation of butanediol/butanediol-derived moieties to the polyurethane surfaces due to phase separation. The adhesion values of these polyurethanes to soda-lime glass were correlated with their respective γP values and a linear relationship was found. It was also shown that the adhesion values of the low γP polyurethanes improved substantially when the glass surfaces were coated with a thin layer of butanediol prior to the bonding. The modulus of the interphase region rich in butanediol was evaluated. Although a modulus increase was found at the interface, this increase was found to play a secondary role in the adhesion. The chemical interactions at the polyurethane/glass interphase were investigated by pre-treating the glass surfaces with methyl-trimethoxysilane and trimethylchlorosilane prior to adhesion testing. The adhesion data showed no significant difference between the uncoated and the silane-treated glass substrates. Based on this experimental evidence, the possibility of any covalent or ionic bonding at the polyurethane/glass interphase was assumed negligible. It was determined that the mechanism of adhesion between the polyurethanes and the glass surface could be through the formation of an interphase region in which hydrogen bonding between the butanediol-rich interphase region and the hydroxylated glass surface plays a key role.  相似文献   

20.
Semi‐interpenetrating polymer network (semi‐IPN) films with different NCO/OH molar ratios of the urethane prepolymer, coded as UB, were prepared from polyurethane (PU) and benzyl konjac glucomannan (B‐KGM) by a casting method. The effect of the NCO/OH molar ratio of the urethane prepolymer on the miscibility and properties of the UB films was investigated using Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, thermogravimetric analysis, and swelling and tensile tests. The results indicated that, with an increase of the NCO/OH ratio, the crosslink density of the UB films increased, resulting in improved miscibility between PU and B‐KGM and a relatively high light transmittance of the UB films. However, the thermal stability of the UB films decreased with increase of the NCO/OH ratio of the urethane prepolymer, due to the depolymerization of the urethane bonds of the PU networks. When the NCO/OH ratio increased from 2 to 4, the tensile strength of the UB films increased from 15 to 27 MPa, while the breaking elongation decreased from 72 to 16%, resulting from the chemical and physical crosslinks, namely, the enhancement of the covalent bonds and hydrogen‐bonding networks. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1304–1310, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号