首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
用金属有机物气相外延设备,在氮化镓/蓝宝石复合衬底上快速外延生长铟镓氮薄膜,并对其进行了X射线三晶衍射、光致发光、反射光谱及霍尔测量等实验测试.确定该薄膜为单晶,其中In组分可以从0增加到0.26;在光致激发下发光光谱为单峰,且峰值波长在360~555nm范围内可调;其发光机理被证实为膜内载流子经带隙跃迁而直接复合;并具有很高的电子浓度.但InGaN薄膜的结晶质量却随着In含量的增加而变差.  相似文献   

2.
采用电化学方法在磁控溅射方法生长的ZnO薄膜上生长垂直于衬底排列的ZnO纳米柱.ZnO薄膜的作用主要是为ZnO纳米柱的生长提供同质外延层.电化学生长的ZnO纳米柱具有良好的晶体质量和发光性能.通过研究其变温发光光谱可以确定其紫外发光峰来自于带边激子的辐射复合.此种方法生长的ZnO纳米柱在场发射显示、蓝紫色和白光发光二极管方面有潜在的应用前景.  相似文献   

3.
报道了利用等离子辅助分子束外延技术,在蓝宝石c平面上外延生长的MgxZn1-xO单晶薄膜以及MgZnO/ZnO异质结构的光学性质.室温下随着Mg浓度增加,合金薄膜样品的发光峰与吸收边均向高能侧移动.研究了样品紫外发光的起因,将MgxZn1-xO合金薄膜的发光归结为束缚激子的复合.在Mg0.08Zn0.92O/ZnO样品中,观察到了分别来自于ZnO层和MgZnO盖层的发光和吸收,并将其归因于来自ZnO层的自由激子和MgZnO盖层的束缚激子发射.  相似文献   

4.
采用金属有机化学气相沉积(MOCVD)方法,在GaN/蓝宝石复合衬底上生长了InGaN薄膜,并研究了生长温度对InGaN薄膜的In组分、结晶品质和发光特性的影响.实验中发现随着生长温度的降低,InGaN薄膜中的In组分提高,但结晶品质显著下降.X射线衍射(XRD)联动扫描的结果显示即使在In组分增大至0.57时也没有发现相分离现象,光致发光(PL)谱测量的结果表明InGaN薄膜的PL峰位随着In组分升高而向低能方向移动,半高宽随着In组分增加而增加.  相似文献   

5.
采用金属有机化学气相沉积(MOCVD)方法,在GaN/蓝宝石复合衬底上生长了InGaN薄膜,并研究了生长温度对InGaN薄膜的In组分、结晶品质和发光特性的影响.实验中发现随着生长温度的降低,InGaN薄膜中的In组分提高,但结晶品质显著下降.X射线衍射(XRD)联动扫描的结果显示即使在In组分增大至0.57时也没有发现相分离现象,光致发光(PL)谱测量的结果表明InGaN薄膜的PL峰位随着In组分升高而向低能方向移动,半高宽随着In组分增加而增加.  相似文献   

6.
采用液相外延方法在In As衬底上制备了In As0.94Sb0.06外延薄膜.分别通过高分辨率X射线衍射谱和扫描电子显微镜测试对样品的结构特性和截面形貌进行表征分析,外延薄膜的晶体质量较好.利用样品在3 000~6 000 nm波段内的椭圆偏振光谱,结合介电函数模型,拟合得到了室温下In As衬底和In As0.94Sb0.06薄膜位于禁带位置附近的的折射率和消光系数光谱.由禁带位置附近的折射率能量增强效应确定In As0.94Sb0.06薄膜的禁带宽度为0.308 e V.  相似文献   

7.
Mg_xZn_(1-x)O单晶薄膜和MgZnO/ZnO异质结构的光学性质   总被引:1,自引:0,他引:1  
报道了利用等离子辅助分子束外延技术,在蓝宝石c平面上外延生长的Mgx Zn1 - x O单晶薄膜以及Mg Zn O/Zn O异质结构的光学性质.室温下随着Mg浓度增加,合金薄膜样品的发光峰与吸收边均向高能侧移动.研究了样品紫外发光的起因,将Mgx Zn1 - x O合金薄膜的发光归结为束缚激子的复合.在Mg0 .0 8Zn0 .92 O/ Zn O样品中,观察到了分别来自于Zn O层和Mg Zn O盖层的发光和吸收,并将其归因于来自Zn O层的自由激子和Mg Zn O盖层的束缚激子发射  相似文献   

8.
研究了热壁外延CdTe/(111)CdTe薄膜77~200K的光致发光光谱。在77K首次观察到了CdTe的自由激子第一激发态的发光峰1.588eV。热壁外延CdTe薄膜具有很强的自由激子发光峰和微弱的缺陷发光,以及很好的横向均匀性,边缘发光峰的半宽度8.3meV是迄今报道中最窄的。光致发光光谱研究表明,热壁外延CdTe/(111)CdTe薄膜明显优于CdTe体材料。  相似文献   

9.
用光荧光谱和原子力显微镜测试技术系统研究了在2 nm In0.2Ga0.8As和x ML GaAs的复合应力缓冲层上生长的InAs/GaAs自组织量子点的发光特性和表面形貌.采用In0.2Ga0.8As与薄层GaAs复合的应力缓冲层,由于减少了晶格失配度致使量子点密度从约1.7×109 cm-2显著增加到约3.8×109cm-2.同时,复合层也有利于提高量子点中In的组份,使量子点的高宽比增加,促进量子点发光峰红移.对于x=10 ML的样品室温下基态发光峰达到1350 nm.  相似文献   

10.
ZnSe薄膜的激子光谱   总被引:5,自引:2,他引:3  
采用分子束外延 (MBE)技术 ,在 Ga As(1 0 0 )衬底上生长了厚度从 0 .0 4 5到 1 .4μm的 Zn Se薄膜 .X射线衍射谱证实 ,随着薄膜厚度的增加 ,应变逐步弛豫 .测量了低温下样品的反射谱和光致发光谱 ,观察到轻重空穴的能级在不同应变下的分裂、移动和反转 ,以及激子极化激元 (Po-lariton)对反射谱的影响 .也观察到束缚激子发光随着薄膜厚度的变化规律 :束缚在中性受主杂质上的束缚激子发光 (I1峰 )随着薄膜厚度的增加逐渐变弱直至消失 ,而束缚在中性施主杂质上的束缚激子发光 (I2 峰 )则随着厚度增加逐渐增强 .  相似文献   

11.
The chemical composition fluctuations of InGaN nanowires are studied by a combination of Energy Dispersive X-ray spectroscopy and photoluminescence spectroscopy. It is demonstrated that these fluctuations are linked to the elastic strain relaxation mechanism affecting InGaN sections grown on GaN nanowires. It is further shown that the elastic strain relaxation mechanism depends itself on the growth conditions, in particular on the effective metal/active nitrogen flux ratio. As a consequence of the presence of chemical composition fluctuations, wide photoluminescence spectra are observed, associated with a marked carrier localization.  相似文献   

12.
We have studied the influence of indium (In) composition on the structural and optical properties of Inx Ga1−xN/GaN multiple quantum wells (MQWs) with In compositions of more than 25% by means of high-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and transmission electron microscopy (TEM). With increasing the In composition, structural quality deterioration is observed from the broadening of the full width athalf maximum of the HRXRD superlattice peak, the broad multiple emission peaks oflow temperature PL, and the increase of defect density in GaN capping layers and InGaN/GaN MQWs. V-defects, dislocations, and two types of tetragonal shape defects are observed within the MQW with 33% In composition by high resolution TEM. In addition, we found that V-defects result in different growth rates of the GaN barriers according to the degree of the bending of InGaN well layers, which changes the period thickness of the superlattice and might be the source of the multiple emission peaks observed in the InxGa1−xN/GaN MQWs with high in compositions.  相似文献   

13.
Multiple surface reconstructions have been observed on ultra-thin GaN (0001) layers of 1–10 nm thickness, covering a 3 nm thick In0.11Ga0.89N single quantum well in a GaN matrix. Low energy electron diffraction patterns show (2×2) and (√3×√3)-R30° symmetries for samples annealed in nitrogen plasma, and (2×2), (3×3), (4×4), and (6×6) symmetries for samples overgrown with an additional monolayer-thin GaN film by molecular beam epitaxy under Ga-rich growth conditions. Photoelectron spectroscopy shows that the InGaN quantum wells and capping layers are stable for growth temperatures up to 760 °C, and do not show formation of indium or gallium droplets on the surface. The photoluminescence emission from the buried InGaN SQWs remains unchanged by the preparation process, demonstrating that the SQWs do not undergo any significant modification.  相似文献   

14.
采用MOCVD技术以Al2O3为衬底在GaN膜上生长了InGaN薄膜.以卢瑟福背散射/沟道(RBS/Channeling)技术和光致发光(PL)技术对InxGa1-xN/GaN/Al2O3样品进行了测试,获得了合金层的组分、厚度、元素随深度分布、结晶品质及发光性能等信息.研究表明生长温度和TMIn/TEGa比对InGaN薄膜的In组分和生长速率影响很大.在一定范围内,降低TMIn/TEGa比,InGaN膜的生长速率增大,合金的In组分反而提高.降低生长温度,InGaN膜的In组分提高,但生长速率基本不变.InGaN薄膜的结晶品质随In组分的增大而显著下降,InGaN薄膜的In组分由0.04增大到0.26,其最低沟道产额比由4.1%增至51.2%.InGaN薄膜中In原子易处于替位位置,在所测试的In组分范围,In原子的替位率均在98%以上.得到的质量良好的In0.04Ga0.96N薄膜的最低产额为4.1%.研究结果还表明用RBS技术和光致发光技术测定InGaN中In组分的结果相差很大,InGaN的PL谱要受较多因素影响,很难准确测定In组分,而以RBS技术得到的结果是可靠的.  相似文献   

15.
We report growth and characterization of a shallow–deep InGaN/GaN multiple-quantum-well (MQW) system for dual-wavelength emission grown on semipolar (11[`2]2 11\bar{2}2 ) facet GaN. Structural and optical properties of the InGaN multiple-quantum-well system were investigated by scanning electron microscopy (SEM), cross-sectional scanning transmission electron microscopy (XSTEM), photoluminescence (PL), photoluminescence excitation (PLE), and time-resolved photoluminescence (TRPL) measurements. Cross-sectional transmission electron microscopy (XTEM) revealed that the growth rate of the InGaN well layers on the (0001) flat top microfacet (~500 nm) was about six times as fast as on the (11[`2]2 11\bar{2}2 ) inclined facet, whereas the growth rate of GaN barrier layers on the (0001) flat top facet was roughly 4.5 times as large as that on the (11[`2]2 11\bar{2}2 ) facet. A room-temperature PL spectrum showed dual-wavelength light emission of the shallow–deep InGaN multiple-quantum-well system situated at 2.720 eV (455 nm) and 2.967 eV (418 nm). The Stokes shifts between the two PL peaks and the two “effective bandgaps” were ~260 meV in energy for the deep quantum wells and ~233 meV for the shallow quantum wells. The TRPL decay demonstrated the short radiative recombination lifetime on the order of several nanoseconds in the InGaN MQW system. Realization of the shallow–deep InGaN multiple-quantum-well system with emission wavelength controllability would be useful to achieve III-nitride-based multicolor light-emitting devices for displays.  相似文献   

16.
We have examined how a growth interruption, caused by closing group-III sources, affects the crystalline quality of InGaN/GaN quantum-well (QW) structures grown by metalorganic vapor phase epitaxy. The QW samples were characterized by their photoluminescence (PL), and by atomic force microscopy (AFM), transmission electron microscopy (TEM), and energy dispersive x-ray (EDX) microanalysis. The PL peak wavelength was strongly dependent on the duration of the growth interruption and on the number of QW layers. AFM measurements revealed that the size of the open hexagonally shaped pits in the QW structures increased dramatically as the interruption duration was lengthened. Through TEM and EDX microanalysis, we found that the formation of these hexahedronal pits, formed due to the growth interruption, causes a large fluctuation in the In composition, especially around the pits, and the presence of such pits in an underlying QW layer strongly affects the In incorporation into the upper QW layers, leading to significant growth-rate variation in an InGaN QW layer and red-shifting of the PL spectra when a multiple-QW structure is grown.  相似文献   

17.
Mg-doped InGaN/GaN p-type short-period superlattices (SPSLs) are developed for hole injection and contact layers of green light-emitting diodes (LEDs). V-defect-related pits, which are commonly found in an InGaN bulk layer, can be eliminated in an InGaN/GaN superlattice with thickness and average composition comparable to those of the bulk InGaN layer. Mg-doped InGaN/GaN SPSLs show significantly improved electrical properties with resistivity as low as ∼0.35 ohm-cm, which is lower than that of GaN:Mg and InGaN:Mg bulk layers grown under optimized growth conditions. Green LEDs employing Mg-doped InGaN/GaN SPSLs for hole injection and contact layers have significantly lower reverse leakage current, which is considered to be attributed to improved surface morphology. The peak electroluminescence intensity of LEDs with a SPSL is compared to that with InGaN:Mg bulk hole injection and contact layers.  相似文献   

18.
The electrical and optical properties of light-emitting devices with an active region containing several layers of InGaN/GaN quantum dots (QDs) separated by GaN spacers are studied. It is shown that the overgrowth of the QD layer with an InGaN layer that has a reduced In content at higher temperatures raises the confinement energy of carriers in QDs. Furthermore, inhomogeneous carrier injection, predominantly into regions with higher confinement energy, is observed. The electrical and optical properties of p-n junctions and the effect of the inhomogeneities on these properties are studied in detail. It is shown that the shifts of photoluminescence and electroluminescence lines, which are observed when changing the experimental conditions, are related to these properties of the inhomogeneities in the p-n junction.  相似文献   

19.
Zn-doped InGaN thin films were deposited on GaN/sapphire by metalorganic chemical vapor deposition, and studied by a combination of high-resolution X-ray diffraction (HR-XRD), micro-photoluminescence (PL) and secondary ion mass spectrometry (SIMS). Indium phase separation is studied comparatively. HR-XRD exhibits a GaN band and a single band from InGaN for samples without phase separation, but two InGaN bands corresponding to different x(In) for samples with phase separation. PL excitation power dependence measurements reveal 2 sets of InGaN PL emissions for samples with phase separation, but only 1 set for samples without phase separation. SIMS data showed that phase separated InGaN:Zn films possess a high Zn concentration near the InGaN–GaN interface and non-uniform distributions of In and Zn contents, which are in contrast with data from InGaN:Zn films with no In-phase separation.  相似文献   

20.
The design of coherently strained InGaN epilayers for use in InGaN p-n junction solar cells is presented in this letter. The X-ray diffraction of the epitaxially grown device structure indicates two InGaN epilayers with indium compositions of 14.8% and 16.8%, which are confirmed by photoluminescence peaks observed at 2.72 and 2.67 eV, respectively. An open-circuit voltage of 1.73 V and a short-circuit current density of 0.91 mA/cm2 are observed under concentrated AM 0 illumination from the fabricated solar cell. The photovoltaic response from the InGaN p-n junction is confirmed by using an ultraviolet filter. The solar cell performance is shown to be related to the crystalline defects in the device structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号