共查询到19条相似文献,搜索用时 78 毫秒
1.
基于文化粒子群算法的KPCA特征提取 总被引:1,自引:1,他引:0
如何选择最优或接近最优的核函数使分类错误率降低,是KPCA应用于特征提取的关键。为了优化核 函数,提高特征提取的能力并降低分类错误率,在研究了文化算法(cultural algorithm, CA)、粒子群优化(particle swarm optimization, PSO)相关文献的基础上,提出了一种文化粒子群算法(cultural based PSO, CBPSO)流程,并 将此算法用于训练核函数参数,实现了KPCA和CBPSO的集成,有效地提高了核函数的优化选择。通过比较 CBPSO-KP 相似文献
2.
基于复合核函数KPCA的红外人脸识别 总被引:2,自引:0,他引:2
研究人脸优化识别问题,提出一种复合核函数KPCA的红外人脸特征提取法.利用最优或者接近最优的复合核函数主元分析KPCA方法对训练样本核映射到高维空间进行特征提取预处理,并结合最近邻法分类器分类进行红外人脸识别.该方法不仅有效的提取了训练样本的非线性信息,而且有效的改进了识别效果.多次实验结果表明了,基于复合核函数KPCA的红外人脸识别率优于传统的核主元分析法(KPCA)和主元分析法(PCA).结果表明,改进方法可减少识别时间,并保证了识别率一直稳定在比较高的水平. 相似文献
3.
针对现有模糊聚类方法仅仅是对已有数据点的聚类的不足,提出了在已有数据集的基础上找到新的一类集群的聚类方法 CFCM。该算法在FCM算法的基础上,通过引入观测点P作为聚类的先验知识,来大致确定未知集群的聚类中心,定义了权重系数λ来限定观测点对新的一类聚类中心形成的影响程度。人造数据集和UCI真实数据集的实验结果表明,该算法不仅对已知数据点有较好的聚类效果,并且可以在观测点P的作用下在特定区域创造出新的一类无已知数据点的集群中心点的大致位置,因而在实际中有潜在应用价值。 相似文献
4.
FCM算法是目前广泛使用的算法之一。,针对FCM聚类质量和收敛速度依赖于初始聚类中心的问题,结合Canopy聚类算法能够粗略快速地对数据集进行聚类的优点,提出了一种基于Canopy聚类的FCM算法。该算法通过将Canopy算法快速获取到的聚类中心作为FCM算法的输入来加快FCM算法收敛速度。并在云环境下设计了其MapReduce化方案,实验结果表明,MapReduce化的基于Canopy聚类的FCM算法比MapReduce化的FCM聚类算法具有更好的聚类质量和运行速度。 相似文献
5.
针对模糊聚类存在的数据收缩问题的不足,提出了一种改进现有模糊聚类算法的方法,并进行仿真实验研究.模糊C-均值(FCM)算法主要通过目标函数的迭代优化来实现集合划分,以信息熵作为模糊C-均值算法的约束条件,给出改进算法的推导过程,得出改进后的模糊C-均值算法的隶属度和聚类中心,实现了模糊C-均值的改进算法.实验结果可以表明,改进的模糊C-均值算法是有效的,能够表现出比模糊C-均值算法更好的性能,在实际应用中可以取得较好的聚类效果. 相似文献
6.
融合FDA-PCMC样本分类的KPCA故障检测新算法 总被引:1,自引:0,他引:1
针对处理实际工业过程中提取的建模样本不纯而导致故障检测失效的问题,提出一种新的融合Fisher判别分析-可能性C-均值聚类(FDA-PCMC)的核主元分析(KPCA)故障检测算法.通过FDA特征提取、初分类和PCMC聚类相结合的方代来实现建模样本的有效分类和提纯,然后使用KPCA进行实时故障检测.对Tennessee Eastman(TE)过程的仿真研宄结果表明了该算法的可行性和有效性. 相似文献
7.
分析了Fuzzy C-Means算法中模糊指标m→1+和m→∞对隶属函数的模糊控制作用,据此提出一种带模糊指标的隶属函数,具有性质:(1)一个数据点对各个模式的隶属度和为1;(2)模糊指标m控制模糊程度。使用Iris数据集对样板法中新旧两种隶属函数做了实验对比。 相似文献
8.
9.
《计算机应用与软件》2014,(2)
首先在确定模糊聚类的初始聚类数和初始聚类中心方面,引入颜色直方图应用于FCM聚类算法中。其次再将空间信息引入到FCM中,重建包含邻域信息的新的隶属度迭代函数。最后,用内核诱导距离取代原算法中的欧式距离,对实验图像的特征进行优化,并对算法进行评价对比。实验结果表明,该算法具有良好的分割质量和效果,并且也具有较强大的噪声抑制能力。 相似文献
10.
采用K-means算法和FCM算法实现对47个城市竞争力的聚类分析,选择较为简便的聚类有效性函数用于聚类结果的检验,得到了两种有效的聚类算法的实现方式,并验证该方法的合理性. 相似文献
11.
针对模糊C-均值聚类对初始值敏感、容易陷入局部最优的缺陷,提出了一种基于萤火虫算法的模糊聚类方法。该方法结合萤火虫算法良好的全局寻优能力和模糊C-均值算法的较强的局部搜索特性,用萤火虫算法优化搜索FCM的聚类中心,利用FCM进行聚类,有效地克服了模糊C-均值聚类的不足,同时增强了萤火虫算法的局部搜索能力。实验结果表明,该算法具有很好的全局寻优能力和较快的收敛速度,能有效地收敛于全局最优解,具有较好的聚类效果。 相似文献
12.
在大数据环境下进行模糊信息挖掘抽取中受到数据之间的小扰动类间干扰的影响,导致信息抽取的特征聚类性不好。为此提出一种基于改进混沌分区算法的模糊信息抽取方法,对高维数据信息流进行分布式结构重组,以Lorenz混沌吸引子作为训练测试集进行大数据模糊信息抽取的自适应学习训练,采用相空间重构技术对大数据的混沌吸引子负载特征量进行自相关特征匹配处理,提取模糊信息的平均互信息特征量,结合关联规则模糊配对方法进行大数据混沌分区,实现模糊信息的优化聚类,根据数据聚类结果实现模糊信息准确抽取,对抽取的高维模糊信息进行特征压缩,降低计算开销。仿真结果表明,采用该方法进行大数据样本序列的模糊信息抽取的聚类性较好,抗类间扰动能力较强,模糊信息抽取的准确概率较高,在数据挖掘和特征提取中具有很好的应用价值。 相似文献
13.
将模糊K-均值聚类算法与核函数相结合,采用基于核的模糊K-均值聚类算法来进行聚类。核函数隐含地定义了一个非线性变换,将数据非线性映射到高维特征空间来增加数据的可分性。该算法能够解决模糊K-均值聚类算法对于非凸形状数据不能正确聚类的问题。 相似文献
14.
动态加权模糊核聚类算法 总被引:2,自引:0,他引:2
为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法.该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数据没有任何先验信息的情况下,不仅能够准确划分线性数据,而且能够做到非线性划分非团状数据.仿真和实际数据分类结果表明,数据中的噪声对分类结果影响较小,该算法具有很高的实用性. 相似文献
15.
16.
17.
基于混合核函数的可能性C-均值聚类算法 总被引:1,自引:0,他引:1
针对传统的模糊C-均值算法对于非球形分布的数据聚类效果不理想且易受到噪声数据的影响,利用可能性C-均值算法具有良好的抗噪声性能,将混合核函数引入到该算法中,提出了一种基于混合核函数的可能性C-均值(HKPCM)聚类算法。该算法将原空间的待分类样本映射到一个高维的特征空间(核空间)中,使得样本变得线性可分,然后在核空间中进行聚类。实验结果证实了HKPCM算法的可行性和有效性。 相似文献
18.
提出了一种结合C-均值聚类算法和模糊熵的图像分割方法,该方法先采用C均值聚类算法对含噪图像进行初步分割,再利用模糊熵准则作后续处理。该方法一方面能够继承C-均值聚类算法的优点,可以灵活地用在基于多特征和多阂值的图像分割中,另一方面充分考虑了图像的区域信息,利用模糊熵最小作为准则,对c均值聚类算法初步分割结果的错分类点作了进一步的处理,克服了C-均值聚类算法对噪声敏感的缺点。实验结果表明,本文方法在运算开销上只比C-均值聚类算法多4~6S,对于低信噪比的图像能够取得优于C-均值聚类算法的分割效果。 相似文献
19.
聚类分析是数据挖掘中应用最多的一种技术,它在许多领域都有重要应用。模糊h-prototypes算法是当前聚类分析中最有效算法之一,但是存在对初始值敏感、容易陷入局部极小值的问题。为了克服该缺点,提出了一种基于量子遗传算法和FKP算法的混合聚类算法,首先利用量子遗传算法确定FKP的初始聚类中心,再将量子遗传算法聚类结果作为后续FKP算法的初始值。实验结果显示,算法具有良好的收敛性和稳定性,聚类效果优于单一使用FKP算法和相关改进的算法。 相似文献