首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microstructure and microwave dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics system with ZnO additions (0.5 wt.%) investigated by the conventional solid-state route have been studied. Doping with ZnO (0.5 wt.%) can effectively promote the densification and the dielectric properties of xLa(Mg1/2Ti1/2)O3–(1 − x)Ca0.6La0.8/3TiO3 ceramics. 0.6La(Mg1/2Ti1/2)O3–0.4Ca0.6La0.8/3TiO3 ceramics with 0.5 wt.% ZnO addition possess a dielectric constant (r) of 43.6, a Q × f value of 48,000 (at 8 GHz) and a temperature coefficient of resonant frequency (τf) of −1 ppm/°C sintering at 1475 °C. As the content of La(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 62,900 (GHz) for x = 0.8 is achieved at the sintering temperature 1475 °C. A parallel-coupled line band-pass filter is designed and simulated using the proposed dielectric to study its performance.  相似文献   

2.
The ternary system (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 (abbreviated to BNKLT-x/y) was synthesized by conventional oxide-mixed method. The phase structure, microstructure, and dielectric, ferroelectric and piezoelectric properties of the ceramics were investigated. The X-ray diffraction patterns showed that pure perovskite phase with rhombohedral structure can be obtained in all the ceramics. The grain size varied with x and y. The temperature dependence of dielectric constant and dielectric loss revealed there were two phase transitions which were from ferroelectric (tetragonal) to anti-ferroelectric (rhombohedral) and anti-ferroelectric to paraelectric (cubic). Either increasing x or y content can make Tm (the temperature at which dielectric constant r reaches the maximum) increase. With the addition of Bi0.5K0.5TiO3, the remanent polarization Pr increased but the coercive field Ec decreased. With the addition of Bi0.5Li0.5TiO3, Pr increased obviously and Ec increased slightly. Due to the stronger ferroelectricity by modifying Bi0.5K0.5TiO3 and Bi0.5Li0.5TiO3, the piezoelectric properties were enhanced at x = 0.22 and y = 0.10, which were as follows: Pr = 31.92 μC/cm2, Ec = 32.40 kV/cm, r = 1118, tan δ = 0.041, d33 = 203 pC/N and Kp = 0.31. The results show that the BNKLT-x/y ceramics are promising candidates for the lead-free materials.  相似文献   

3.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

4.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

5.
Phase evolution and microwave dielectric properties of (1 − x)(Mg0.95Co0.05)2TiO4-xTiO2 (x = 0-1) ceramics prepared by the conventional mixed oxide route have been investigated. Increasing the TiO2 content would lead to a main phase transformation from (Mg0.95Co0.05)2TiO4 to (Mg0.95Co0.05)TiO3, (Mg0.95Co0.05)Ti2O5 and then TiO2. Not only did the TiO2 addition compensate the τf, it also lowered the sintering temperature of specimen. A huge drop of Q × f occurs at a 40-60 mol% TiO2 addition was attributed to the formation of (Mg0.95Co0.05)Ti2O5 phase. Specimen with x = 0.78 can possess an excellent combination of microwave dielectric properties: ?r ∼ 24.77, Q × f ∼ 38,500 GHz and τf ∼ −1.3 ppm/°C.  相似文献   

6.
A comparative study on heterophase states in perovskite-type solid solutions of (1 − x)Pb(Mg1/3Nb2/3)TiO3xPbTiO3 is carried out for compositions near the morphotropic phase boundary. The conditions for mechanical stress relief at elastic matching of phases are analysed at x = const in a wide temperature range. The heterophase states concerned with the presence of the intermediate monoclinic phase are interpreted using the domain state–interface diagrams calculated for x = 0.28, 0.32 and 0.34. It is shown that optimum volume fraction parameters of the domains in the monoclinic phase of the B type are varied in relatively wide ranges and promote complete stress relief with cubic–monoclinic phase coexistence. Two scenarios of stress relief at x = 0.32 are considered in connection with different heterophase states (either tetragonal–monoclinic of the B type or tetragonal–monoclinic of the C type) in a wide temperature range. Possibilities of elastic matching of two polydomain phases (tetragonal–monoclinic of the B type) with almost equal relative widths of the domains in these phases are shown for x = 0.34. The active role of domains of the monoclinic phases in stress relief and forming the planar unstrained interfaces is discussed.  相似文献   

7.
The crystal structure and the dielectric properties of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 ceramics have been investigated. Ca0.8Sm0.4/3TiO3 was employed as a τf compensator and was added to La(Mg0.5Ti0.5)O3 to achieve a temperature-stable material. The formation of (1 − x)La(Mg0.5Ti0.5)O3-xCa0.8Sm0.4/3TiO3 solid solutions were confirmed by the XRD results and the measured lattice parameters for all compositions. The dielectric properties are strongly correlated to the sintering temperature and the compositional ratio of the specimens. Although the ?r of the specimen could be boosted by increasing the amount of Ca0.8Sm0.4/3TiO3, it would instead render a decrease in the Q × f. The τf value is strongly correlated to the compositions and can be controlled by the existing phases. A new microwave dielectric material 0.45La(Mg0.5Ti0.5)O3-0.55Ca0.8Sm0.4/3TiO3, possessing a fine combination of microwave dielectric properties with an ?r of 47.83, a Q × f of 26,500 GHz (at 6.2 GHz) and a τf of −1.7 ppm/°C, is proposed as a very promising candidate material for today's 3G applications.  相似文献   

8.
Nickel-doped iron-deficient cobalt ferrite with small amount of manganese having the chemical composition Co1−xNixFe1.9Mn0.1O4, with x = 0.2, 0.4, 0.6 and 0.8, were prepared by standard double sintering ceramic method. The spinel phase formation was confirmed by X-ray diffraction (XRD). The DC resistivity measurements with temperature indicate a semiconducting behavior showing a linear decrease with increasing temperature and the doping of Ni enhances the resistivity. Maximum resistivity of the order of 109 Ω cm was found for composition x = 0.8. Room temperature dielectric constant measurements with frequency (100 Hz to 1 MHz), show usual dielectric dispersion. Also, the variation of room temperature AC conductivity as a function of frequency were studied and explained by using Maxwell–Wagner two-layer model. The studies on dielectric constant (′), loss tangent (tan δ) and AC conductivity (σAC), at four different frequencies (viz., 1, 10, 100 kHz and 1 MHz), with temperature were made.  相似文献   

9.
In this paper, the dielectric properties of Ca1−xMgxLa4Ti5O17 ceramics at microwave frequency have been studied. The diffraction peaks of Ca(1−x)MgxLa4Ti5O17 ceramics nearly unchanged with x increasing from 0 to 0.03. Similar X-ray diffraction peaks of Ca0.99Mg0.01La4Ti5O17 ceramic were observed at different sintering temperatures. A maximum density of 5.3 g/cm3 can be obtained for Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h. A maximum dielectric constant (r) and quality factor (Q × f) of Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h are 56.3 and 12,300 GHz (at 6.4 GHz), respectively. A near-zero temperature coefficient of resonant frequency (τf) of −9.6 ppm/°C can be obtained for Ca0.99Mg0.01La4Ti5O17 ceramic sintered at 1500 °C for 4 h. The measurement results for the aperture-coupled coplanar patch antenna at 2.5 GHz are presented. With this technique, a 3.33% bandwidth (return loss <−10 dB) with a center frequency at approximately 2.5 GHz has been successfully achieved.  相似文献   

10.
The Ba0.985Na0.015Ti0.985Nb0.015O3, Ba0.6Na0.4Ti0.6Nb0.4O3 and Ba0.3Na0.7Ti0.3Nb0.7O3 compositions of the (1 − x) BaTiO3xNaNbO3 (BTNNx) system have been studied by X-ray diffraction and by measurements of dielectric properties. The specimens with composition BTNN (x = 0.015, 0.40 and 0.70) have been refined by the JANA program from X-ray powder diffraction data. Ceramic samples with composition (1 − x) BaTiO3 + xNaNbO3 (where x = 0.015, 0.40 and 0.70) were prepared by calcinations from appropriate mixture of BaCO3, TiO2, Na2CO3 and Nb2O5. The calcined powder was sintered at temperature range 1200–1400 °C. As the composition x increased from 0.015 (and 0.70), the ferroelectric ceramics (x = 0.015, FE) with tetragonal phase changed to the ferroelectric relaxors (RFE, x = 0.40). RFE ceramics showed a peculiar diffuse phase transition and dielectric relaxation at the low temperature (down to 180 K) due to a frustration between RFE and FE state. These ceramics present the classical ferroelectric character when 0 ≤ x < 0.075 and 0.55 < x ≤ 1 and relaxor character when 0.075 ≤ x ≤ 0.55.  相似文献   

11.
The composite ceramics of Ba0.55Sr0.4Ca0.05TiO3-CaTiSiO5-Mg2TiO4 (BSCT-CTS-MT) were prepared by the conventional solid-state route. The sintering performance, phase structures, morphologies, and dielectric properties of the composite ceramics were investigated. The BSCT-CTS-MT ceramics were sintered at 1100 °C and possessed dense microstructure. The dielectric constant was tailored from 1196 to 141 as the amount of Mg2TiO4 increased from 0 to 50 wt%. The dielectric constant and dielectric loss of 40 wt% Ba0.55Sr0.4Ca0.05TiO3-10 wt% CaTiSiO5-50 wt% Mg2TiO4 was 141 and 0.0020, respectively, and the tunability was 8.64% under a DC electric field of 8.0 kV/cm. The Curie peaks were broadened and depressed after the addition of CaTiSiO5. The optimistic dielectric properties made it a promising candidate for the application of tunable capacitors and phase shifters.  相似文献   

12.
The structural, magnetic and electrical properties of (La0.70−xNdx)Sr0.30Mn0.70Cr0.30O3 perovskites (0 ≤ x ≤ 0.30) prepared by the usual ceramic procedure were investigated. Structural Rietveld refinement revealed that these compounds crystallize in a rhombohedral perovskite structure when x = 0, 0.10 and 0.20, while for x = 0.30 the structure becomes orthorhombic (Pbnm). It was found that the substitution of La by Nd reduces the Curie temperature (TC). The FC, ZFC, M(H) and AC susceptibility measurements show typical canted-antiferromagnetism for the Nd-doped samples, in which a ferromagnetic component coexists with predominant antiferromagnetic interactions. The values of the magnetization (M(H)) decrease very slightly when increasing the Nd content, compared to the undoped sample (MS values at 5 T and 2 K are, respectively, 47.9, 47.3 and 47.5 emu/g for x = 0.10, 0.20 and 0.30, compared to 48.2 emu/g for x = 0), indicating that the Nd3+ contribution is negligible compared to the total moment of the ferromagnetic (Mn/Cr) network. The resistivity increases by several orders of magnitude with Nd-doping and the semi-conducting behaviour persists in the whole temperature range. The interaction between Mn4+–O–Cr3+and Cr3+–O–Cr3+ is responsible for the semi-conducting state.  相似文献   

13.
The microwave dielectric properties and the microstructures of Mg0.95Co0.05TiO3–Ca0.6La0.8/3TiO3 ceramics, prepared by a mixed oxide route, have been investigated. With small amount of V2O5 additions, the sintering temperatures of 0.9Mg0.95Co0.05TiO3–0.1Ca0.6La0.8/3TiO3 ceramics can be lowered to 1250 °C. The microwave dielectric properties are found strongly correlated with the sintering temperature as well as the amount of V2O5 additions. The Q × f value of 0.9Mg0.95Co0.05TiO3–0.1Ca0.6La0.8/3TiO3 increased with increasing temperature to 1250 °C and decreased thereafter. The decrease in Q × f value was coincident with the abnormal grain growth. A maximum Q × f value of 58,000 (GHz) associated with a dielectric constant (?r) of 21.7 and a temperature coefficient (τf) of ?10 ppm/°C, was achieved for 0.25 wt.% V2O5-doped samples at 1250 °C. Moreover, a cross-coupled compact hairpin filter with designed center frequency of 2.0 GHz is designed and fabricated using the proposed dielectric ceramic to study its performance. It also showed a substantial reduction in both insertion loss and size in comparison with other dielectrics FR4 and alumina.  相似文献   

14.
Composite ceramics in the solid solution of Zrx(Zn1/3Nb2/3)1−xTiO4 (x = 0.1-0.4) have been prepared by the mixed oxide route. Formation of solid solution was confirmed by the X-ray diffraction patterns. The microwave dielectric properties, such as dielectric constant (?r), Q × f value and temperature coefficient of resonant frequency (τf) have been investigated as a function of composition and sintering temperature. With x increasing from 0.1 to 0.4, the dielectric constant decreases from 70.9 to 43.2, and the τf decreases from 105 to 55 ppm/°C. The Q × f value, however, increases with increasing x value to a maximum 26,600 GHz (at 6 GHz) at x = 0.3, and then decreases thereafter. For low-loss microwave applications, a new microwave dielectric material Zr0.3(Zn1/3Nb2/3)0.7TiO4, possessing a fine combination of microwave dielectric properties with a high ?r of 51, a high Q × f of 26,600 GHz (at 6 GHz) and a τf of 70 ppm/°C, is suggested.  相似文献   

15.
Microwave dielectric properties and microstructures of (Mg0.95Co0.05)TiO3 ceramics prepared by a new sintering method (reaction-sintering method) were investigated. A pure phase of (Mg0.95Co0.05)TiO3 was obtained by the new method and excellent dielectric properties were observed due to uniformities of the microstructure and the phase. In contrast, the secondary phase (Mg0.95Co0.05)Ti2O5 was observed in samples prepared by conventional sintering method. In order to study the influence of secondary phase on the microwave dielectric properties quantitatively, the weight fraction of (Mg0.95Co0.05)Ti2O5 was calculated on the basis of Rietveld refinement. The pore-free?r values of specimens prepared by two different methods indicated that porosity plays an important role in the ?r values of (Mg0.95Co0.05)TiO3 ceramics. Specimens sintered by reaction-sintering method at 1350 °C for 4 h possess excellent dielectric properties with an ?r of 16.3, a Q × f value of 244,500 GHz, and a τf value of −53.5 ppm/°C.  相似文献   

16.
0.7Bi(Fe1−xCrx)O3–0.1BaTiO3–0.2PbTiO3 (x = 0, 0.1, 0.2, 0.3) solid solutions were prepared by the traditional ceramic process. X-ray diffraction results revealed that the samples with x = 0–0.3 showed pure perovskite structure. Frequency and temperature dependences of dielectric constants and dielectric loss of the samples were investigated. Both dielectric constant and the loss tangent increased at given frequencies (100 Hz–1 MHz), while the Curie temperature of the solid solutions decreased with increasing Cr content. Room temperature magnetic hysteresis loops indicated that an appropriate amount of Cr could improve magnetization of the solid solutions.  相似文献   

17.
Dielectric properties of x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1?x)(La0.5Na0.5)TiO3 ceramic were investigated at microwave frequencies. A nearly 0 ppm/°C temperature coefficient of resonant frequency was realized at x = 0.9. A two-phase system was confirmed by XRD analysis. A dielectric material applicable to microwave devices with a Q × f of 20,000–87,000 GHz and a dielectric constant of 21.27–26.2 was obtained at 1100 °C after 4 h of sintering. The microwave dielectric material 0.9(Mg0.7Zn0.3)0.95Co0.05TiO3-0.1(La0.5Na0.5)TiO3 sintered at 1150 °C for 4 h has a dielectric constant of 24.56, a Q × f of 68,000 GHz, and a τf value of 0 ppm/°C. It is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

18.
A series of samples have been fabricated through vacuum melting method followed by hot-pressing for Zn4Sb3−xTex (x = 0.02–0.08), XRD patterns indicated that all the samples were single-phased β-Zn4Sb3. Electrical conductivity and Seebeck coefficient were evaluated in the temperature range of 300–700 K, showing p-type conduction. The thermoelectric figure of merit (ZT) was increased with the increase of Te content. ZT values of 0.8 and 1.0 were obtained at 673 K for Zn4.08Sb3 and Zn4Sb2.92Te0.08, respectively.  相似文献   

19.
CaLi2−xMgx (0 ≤ x ≤ 2) which has the C14-type Laves phase structure has been successfully synthesized and hydrogenated. The C14-type Laves phase structure was kept after hydrogenation of CaLi2−xMgx (x = 0.2, 0.5, 1). After hydrogenation of CaLi2 and CaMg2, the Laves phase disappeared. The CaH2 and LiH phases were formed from CaLi2 and the CaH2 and Mg phases from CaMg2, respectively. CaLi2−xMgx (0 < x < 2) ternary alloys formed stable hydride phases with the C14-type Laves phase structure in contrast to CaLi2 and CaMg2 binary alloys.  相似文献   

20.
A new proton conducting Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ electrolyte membrane was prepared on NiO-based anode support by suspension spray followed by a co-sintering at 1400 °C for 4 h. Chemical stability test shows that this new proton conductor displays adequate chemical stability against CO2 at intermediate temperatures. The conductivity of Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ in humidified H2 is about 50% higher than that of BaCe0.6Zr0.2Gd0.16Zn0.04O3−δ from 500 to 800 °C. With La0.8Sr0.2MnO3−δ cathode, fuel cell with Ba0.95K0.05Ce0.6Zr0.2Gd0.16Zn0.04O3−δ electrolyte shows 1.02 V of OCV and 354 mW/cm2 of maximum power density at 700 °C, respectively. And the cell performance did not degrade after running at least for 10 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号