首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Microdialysis and 31P-NMR spectroscopy were used to test opposing hypotheses that ischemic preconditioning inhibits adenine nucleotide degradation and purine efflux, or that preconditioning activates cardiovascular adenosine formation to provide enhanced cardioprotection. METHODS: 31P-NMR spectra and matching interstitial fluid (ISF) or venous effluent samples were obtained from Langendorff perfused rat hearts. Control hearts (n = 9) underwent 30 min of global normothermic ischemia and 30 min reperfusion. Preconditioned hearts (n = 6) were subjected to a 5 min ischemic episode and 10 min reflow prior to 30 min ischemia and 30 min reperfusion. Effects of repetitive ischemia-reperfusion (3 x 5 min ischemic episodes) on adenosine levels and energy metabolism were also assessed (n = 8). RESULTS: Preconditioning improved post-ischemic recovery of heart rate x left ventricular developed pressure (71 +/- 5 vs 43 +/- 8%, P < 0.05) and end-diastolic pressure (14 +/- 3 vs 29 +/- 4 mmHg, P < 0.05) compared with control hearts, respectively. Preconditioning did not alter intracellular ATP, phosphocreatine (PCr), inorganic phosphate (Pi), H+ or free Mg2+ during global ischemia, but improved recoveries of PCr, Pi, and delta GATP on reperfusion. ISF adenosine increased more than 20-fold during 30 min ischemia. The 5 min preconditioning episode increased ISF adenosine 3-fold, and reduced ISF adenosine and inosine during subsequent prolonged ischemia by up to 75%. Venous purine levels during reperfusion were also reduced by preconditioning. Accumulation of adenosine in ISF and venous effluent during repetitive ischemia was progressively reduced despite comparable changes in substrate for adenosine formation via 5'-nucleotidase, (5'-AMP), and in allosteric modulators of this enzyme (Mg2+, H+, Pi, ADP, ATP). CONCLUSIONS: (i) Ischemic preconditioning reduces interstitial and vascular adenosine levels during ischemia-reperfusion, (ii) reduced ISF adenosine during ischemia is not due to reduced ischemic depletion of adenine nucleotides in preconditioned rat hearts, (iii) preconditioning may inhibit adenosine formation via 5'-nucleotidase in ischemic rat hearts, and (iv) improved functional recovery with preconditioning is unrelated to metabolic/bioenergetic changes during the ischemic insult, but may be related to improved post-ischemic recovery of [Pi] and delta GATP in this model.  相似文献   

2.
OBJECTIVES: The aim of this study was to compare the cardioprotective effects of preconditioning in hearts from streptozotocin-induced diabetic rats with its effects in normal rat hearts. BACKGROUND: The protective effect of ischemic preconditioning against myocardial ischemia may come from improved energy balance. However, it is not known whether preconditioning can also afford protection to diabetic hearts. METHODS: Isolated perfused rat hearts were either subjected (preconditioned group) or not subjected (control group) to preconditioning before 30 min of sustained ischemia and 30 min of reperfusion. Preconditioning was achieved with two cycles of 5 min of ischemia followed by 5 min of reperfusion. RESULTS: In the preconditioned groups of both normal and diabetic rats, left ventricular developed pressure, high energy phosphates, mitochondrial adenosine triphosphatase and adenine nucleotide translocase activities were significantly preserved after ischemia-reperfusion; cumulative creatine kinase release was smaller during reperfusion; and myocardial lactate content was significantly lower after sustained ischemia. However, cumulative creatine kinase release was less in the preconditioned group of diabetic rats than in the preconditioned group of normal rats. Under ischemic conditions, more glycolytic metabolites were produced in the diabetic rats (control group) than in the normal rats, and preconditioning inhibited these metabolic changes to a similar extent in both groups. CONCLUSIONS: The present study demonstrates that in both normal and diabetic rats, preservation of mitochondrial oxidative phosphorylation and inhibition of glycolysis during ischemia can contribute to preconditioning-induced cardioprotection. Furthermore, our data suggest that diabetic myocardium may benefit more from preconditioning than normal myocardium, possibly as a result of the reduced production of glycolytic metabolites during sustained ischemia and the concomitant attenuation of intracellular acidosis.  相似文献   

3.
The protective effects of ischemic preconditioning on ischemia-reperfusion injury was investigated using isolated Langendorff perfusing hearts from ground squirrel and rat. In Preconditioning I group hearts were first perfused with Krebs-Henseleit solution for 10 min to establish a steady state, then stopped for 15 min to establish global ischemia, and finally followed by 10 min ischemia and 10 min reperfusion. In Preconditioning II group there were three cycles of 5 min ischemia + 5 min reperfusion after 10 min equilibration and then the final 10 min ischemia and 10 min reperfusion were followed. It was found that in group I during the final 10 min ischemia period there was remarkable augmentation of CK release from both animal's hearts. But in group II CK release decreased markedly during the same ischemic period. CK release during final 10 min reperfusion period also decreased significantly in group II in comparison with group I. The incidence of arrhythmias occurred in both animal's hearts was markedly reduced in group II rather than group I. In conclusion, short episode ischemic preconditioning protect subsequent ischemia-reperfusion injury on isolated hearts from ground squirrel and rat.  相似文献   

4.
Exogenous adenosine produces numerous beneficial effects in ischemic myocardium, but pharmacological doses of adenosine are required to exert these effects. This is thought to be due to the rapid metabolism of adenosine by coronary endothelium, although there is no direct evidence supporting this hypothesis in the ischemic/reperfused heart. The purpose of this study was to determine the relationship between vascular and interstitial fluid (ISF) adenosine levels during adenosine-induced cardioprotection. Isolated perfused rat hearts were submitted to 30-min global normothermic ischemia and 30- min reperfusion. Left ventricular developed pressure (LVDP) was measured with a fluid-filled latex balloon, and ISF adenosine was estimated with cardiac microdialysis. Control hearts were compared with hearts treated with increasing doses of adenosine (1, 10 and 100 microM) for 10 min immediately preceding ischemia. Adenosine produced dose-dependent increases in coronary effluent adenosine levels, but only 10 and 100 microM adenosine increased dialysate adenosine concentrations. All adenosine doses increased coronary flow to the same extent, but only the two higher doses decreased spontaneous heart rate. Control and 1 microM adenosine-treated hearts recovered 60 +/- 3% and 46 +/- 7% of preischemic LVDP, respectively, whereas 10 and 100 microM adenosine improved recovery to 80 +/- 5% and 90 +/- 4% of preischemic LVDP, respectively, after 30-min reperfusion. Because ISF bathes the cardiac myocytes, these results are consistent with the hypothesis that adenosine protects the ischemic rat heart via the activation of cardiac myocyte adenosine receptors.  相似文献   

5.
Protein kinase C (PKC) has been implicated in the preconditioning-induced cardiac protection in ischemic/reperfused myocardium. We studied the effect of PKC inhibition with calphostin C (25, 50, 100, 200, 400, and 800 nM), a potent and specific inhibitor of PKC, in isolated working nonpreconditioned and preconditioned ischemic/reperfused hearts. In the nonpreconditioned groups, all hearts underwent 30 min of normothermic global ischemia followed by 30 min of reperfusion. In the preconditioned groups, hearts were subjected to four cycles of ischemic preconditioning by using 5 min of ischemia followed by 10 min reperfusion, before the induction of 30 min ischemia and reperfusion. At low concentrations of calphostin C (25, 50, and 100 nM), the PKC inhibitor had no effect on the incidence or arrhythmias or postischemic cardiac function in the nonpreconditioned ischemic/reperfused groups. With 200 and 400 nM of calphostin C, a significant increase in postischemic function and a reduction in the incidence of arrhythmias were observed in the nonpreconditioned ischemic/reperfused groups. Increasing the concentration of calphostin C to 800 NM, the recovery of postischemic cardiac function was similar to that of the drug-free control group. In preconditioned hearts, lower concentrations (< 100 nM) of calphostin C did not change the response of the myocardium to ischemia and reperfusion in comparison to the preconditioned drug-free myocardium. Two hundred and 400 nM of the PKC inhibitor further reduced the incidence of ventricular fibrillation (VF) from the preconditioned drug-free value of 50% to 0 (p < 0.05) and 0 (p < 0.05), respectively, indicating that the combination of the two, preconditioning and calphostin C, affords significant additional protection. Increasing the concentration of calphostin C to 800 nM blocked the cardioprotective effect of preconditioning (100% incidence of VF). The recovery of cardiac function was similarly improved at calphostin C doses of 200 and 400 nM and was reduced at 800 nM (p < 0.05). With 200 and 400 nM of calphostin C, both cytosolic and particulate PKC activity were reduced by approximately 40 and 60%, respectively, in both preconditioned and preconditioned/ischemic/reperfused hearts. The highest concentration of calphostin C (800 nM) resulted in almost a complete inhibition of cytosolic (100%) and particulate (85%) PKC activity correlated with the abolition of preconditioning-induced cardiac protection. In conclusion, calphostin C protects the ischemic myocardium obtained from intact animals, provides significant additional protection to preconditioning at moderate doses, and blocks the protective effect of preconditioning at high concentrations. The dual effects of calphostin C appear to be strictly dose and "enzyme inhibition" related.  相似文献   

6.
OBJECTIVE: The purpose of this study was to determine the effect of an intracoronary bolus injection of adenosine used in concert with ischemic preconditioning on postischemic functional recovery and infarct size reduction in the rabbit heart and to compare adenosine-enhanced ischemic preconditioning with ischemic preconditioning and magnesium-supplemented potassium cardioplegia. METHODS: New Zealand White rabbits (n = 36) were used for Langendorff perfusion. Control hearts were perfused at 37 degrees C for 180 minutes; global ischemic hearts received 30 minutes of global ischemia and 120 minutes of reperfusion; magnesium-supplemented potassium cardioplegic hearts received cardioplegia 5 minutes before global ischemia; ischemic preconditioned hearts received 5 minutes of zero-flow global ischemia and 5 minutes of reperfusion before global ischemia; adenosine-enhanced ischemic preconditioned hearts received a bolus injection of adenosine just before the preconditioning. To separate the effects of adenosine from adenosine-enhanced ischemic preconditioning, a control group received a bolus injection of adenosine 10 minutes before global ischemia. RESULTS: Infarct volume in global ischemic hearts was 32.9% +/- 5.1% and 1.03% +/- 0.3% in control hearts. The infarct volume decreased (10.23% +/- 2.6% and 7.0% +/- 1.6%, respectively; p < 0.001 versus global ischemia) in the ischemic preconditioned group and control group, but this did not enhance postischemic functional recovery. Magnesium-supplemented potassium cardioplegia and adenosine-enhanced ischemic preconditioning significantly decreased infarct volume (2.9% +/- 0.8% and 2.8% +/- 0.55%, respectively; p < 0.001 versus global ischemia, p = 0.02 versus ischemic preconditioning and p = 0.05 versus control group) and significantly enhanced postischemic functional recovery. CONCLUSIONS: Adenosine-enhanced ischemic preconditioning is superior to ischemic preconditioning and provides equal protection to that afforded by magnesium-supplemented potassium cardioplegia.  相似文献   

7.
Ischemic preconditioning (I-PC) occurs via activation of protein kinase C (PKC). This study was undertaken to determine whether pharmacologic preconditioning by beta-adrenergic stimulation (beta-PC) is mediated by PKC activation. Isolated rat hearts were subjected to 40-min ischemia and 30-min reperfusion. Beta-PC was induced by 0.25 microM isoproterenol pretreatment for 2 min followed by 10-min normoxic perfusion. Beta-PC enhanced the recovery of rate-pressure product of the ischemic/reperfused heart (79.1 +/- 8.4% vs. 12.4 +/- 1.6% of initial for Non-PC group, n = 6) and attenuated the release of creatine kinase during 30-min reperfusion (30.2 +/- 2.2 vs. 59.8 +/- 6.1 nmol/min/g wet wt for Non-PC group, n = 6), similar to an I-PC stimulus of 5-min ischemia and 5-min reperfusion. Treatment with 50 microM polymyxin B, a PKC inhibitor, abolished the cardioprotection of both beta-PC and I-PC. Furthermore, similar changes in subcellular distribution of PKC were induced by both beta-PC and I-PC. The changes in subcellular distribution of PKC-delta suggested its translocation from cytosol to membrane fraction, a marker of PKC activation. These results suggest that the cardioprotection induced by beta-PC, like I-PC, is mediated by PKC activation.  相似文献   

8.
A role for adenosine in ischemic preconditioning and hypoxic preconditioning (HP) has been established in several species but is controversial in rats, due in part to the inconsistency of the data from the different experimental design. Our objective was to investigate the role of adenosine in the protection of the ischemic myocardium by HP in rats. Methods: perfused hearts isolated from Sprague-Dawley rats were exposed to 5 min of hypoxic perfusion before 25 min of global ischemia followed by 20 min of reperfusion. The effects of adenosine receptor antagonist, 8-(p-sulfophenyl)-theophylline (8SPT) on HP-based changes in left-ventricular function, energy metabolites, and release of creatine kinase and lactate dehydrogenase were determined. To minimise non-specific effects of 8SPT, low concentrations of agent (0.5 or 1.0 micro mol/l) were used. Results: 8SPT alone had no deleterious effects on normoxically perfused hearts or on ischemic/reperfused hearts. HP improved the recovery of LV function and creatine phosphate, and reduced the release of enzymes during reperfusion. 8SPT (1.0 micromol/l) ameliorated the beneficial effect of HP on cardiac function, but did not reverse the reduction in release of enzymes by HP completely. Conclusion: results suggest that the protective effect of HP on myocardial contractile function may be mediated by receptor(s) that can be inhibited by low concentrations of antagonist but may not have a primary role in the reduction of cellular damage by HP in rats.  相似文献   

9.
Activation of cardiac muscarinic receptors by vagal stimulation decreases cardiac work, which may have a protective effect against ischemic injury. To determine whether cardiac muscarinic receptors contribute to the mechanisms of preconditioning effects, we examined the effect of carbachol on ischemia/reperfusion damage and the effect of vagotomy on cardioprotection induced by ischemic preconditioning. Rats were subjected to 30 min of left coronary artery occlusion followed by 30-min reperfusion in situ. Pre-conditioning was induced by three cycles of 2-min coronary artery occlusion and, subsequently by 5 min of reperfusion. The incidence of ischemic arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), and the development of myocardial infarction were markedly reduced by the preconditioning. Carbachol infusion (4 micrograms/kg per min) delayed the occurrence of VT and VF during ischemia and reduced the infarct size. Compared with non-ischemic left ventricle, the cyclic guanosine monophosphate (GMP) content in the ischemic region of the left ventricle was decreased by ischemia/reperfusion, whereas the cyclic adenosine monophosphate (AMP) content of this region was increased. These changes were reversed by preconditioning. Similar changes in cyclic GMP and AMP content in the ischemic region were seen in rats undergoing carbachol treatment. These results suggest the possible contribution of muscarinic receptor stimulation to preconditioning. Vagotomy prior to preconditioning diminished the antiarrhythmic effects, whereas it did not block the anti-infarct effect afforded by pre-conditioning. Vagotomy abolished the preconditioning effect on the tissue cyclic GMP, but it did not attenuate the decrease in tissue cyclic AMP. The results suggest that muscarinic stimulation exerts preconditioning-mimetic protective effects in ischemic/reperfused hearts, but that a contribution of reflective vagal activity to the mechanism for preconditioning is unlikely.  相似文献   

10.
BACKGROUND: Adenosine has been reported to mediate the necrosis-limiting effects of ischemic preconditioning; however, it is unclear how this mediation occurs. The present study was undertaken to test the hypothesis that ischemic preconditioning increases 5'-nucleotidase activity and adenosine release during sustained ischemia and subsequent reperfusion. METHODS AND RESULTS: After thoracotomy, the left anterior descending coronary artery was cannulated and perfused with blood redirected from the left carotid artery in 32 dogs. Ischemic preconditioning was produced by four cycles in which the coronary artery was occluded and then reperfused for 5 minutes each. After the last cycle of ischemia and reperfusion, the coronary artery was occluded for 40 minutes. This was followed by 120 minutes of reperfusion. In the control group, the coronary artery was occluded for 40 minutes and reperfused for 120 minutes without ischemic preconditioning. The plasma adenosine concentration was measured and blood gases were analyzed in coronary arterial and venous blood samples taken during 120 minutes of reperfusion. Myocardial 5'-nucleotidase activity was measured before and at 40 minutes of sustained ischemia with and without ischemic preconditioning. The adenosine concentration in coronary venous blood during reperfusion was significantly higher in preconditioned hearts than in the control hearts: 1 minute after the onset of reperfusion, 546 +/- 57 versus 244 +/- 41 pmol/ml; 10 minutes after, 308 +/- 30 versus 114 +/- 14 pmol/ml; 30 minutes after, 175 +/- 24 versus 82 +/- 16 pmol/ml, respectively (p < 0.01). Ectosolic and cytosolic 5'-nucleotidase activities increased in both endocardial and epicardial myocardium in the ischemia-preconditioned hearts. Furthermore, 40 minutes of ischemia increased 5'-nucleotidase activity in ischemia-preconditioned hearts more than in control hearts. CONCLUSIONS: Ischemic preconditioning increases adenosine release and 5'-nucleotidase activity during sustained ischemia and subsequent reperfusion.  相似文献   

11.
It is now well established that pre-treatment with sublethal ischemia, followed by reperfusion, will delay myocardial necrosis during a later sustained ischemic episode, termed ischemic preconditioning (IPC); this has been confirmed experimentally and clinically. However, the effects for the senescent heart differ from those of the mature heart at both functional and cellular levels which have not yet been determined. Comparisons were made between aged (> 135 weeks, n = 18) and mature (15 approximately 20 weeks, n = 8) rabbit hearts which underwent 30 min. normothermic global ischemia with 120 min reperfusion in a buffer-perfused isolated, paced heart model, and the effects of IPC on post-ischemic functional recovery and infarct size were investigated. Ischemic preconditioned hearts (n = 6) were subjected to one cycle of 5 min. global ischemia and 5 min. reperfusion prior to global ischemia. Global ischemic hearts (n = 6) were subjected to 30 min. global ischemia without intervention. Control hearts (n = 6) were subjected to perfusion without ischemia. Post-ischemic functional recovery was better in the ischemic preconditioned hearts than in the global ischemic hearts in both aged and mature hearts. However, in the aged hearts, post-ischemic functional recovery was slightly reduced compared to that of the mature hearts, and only the coronary flow was well-preserved. In the mature hearts, myocardial infarction in the ischemic preconditioned hearts (14.9 +/- 1.3%) and in the control hearts (1.0 +/- 0.3%) was significantly decreased (p < 0.01) compared to that of the global ischemic hearts (32.9 +/- 5.1%). In the aged hearts, myocardial infarction in the ischemic preconditioned hearts (18.9 +/- 2.7%) and in the control hearts (1.1 +/- 0.6%) was significantly decreased (p < 0.001) compared to that of the global ischemic hearts (37.6 +/- 3.7%). The relationship between infarct size and post-ischemic functional recovery of left ventricularpeak developed pressure (LVDP) was linear and the correlation negative, with r = -0.934 (p < 0.001) and -0.875 (p < 0.001) for mature and aged hearts respectively. The data suggest that, in the senescent myocardium, the cellular pathways involved ischemic preconditioning responses that were post-ischemic, and that functional recovery was worse as compared to that of the mature myocardium. Furthermore, the effects of post-ischemic functional recovery became consistently weaker during the control period of 120 min. reperfusion after a prolonged ischemic insult in a buffer perfused isolated rabbit model. However, the effects of infarct size limitation were well-preserved in both senescent and mature myocardia.  相似文献   

12.
BACKGROUND: Acceleration of ischemic contracture is conventionally accepted as a predictor of poor postischemic function. Hence, protective interventions such as cardioplegia delay ischemic contracture and improve postischemic contractile recovery. We compared the effect of ischemic preconditioning and cardioplegia (alone and in combination) on ischemic contracture and postischemic contractile recovery. METHODS AND RESULTS: Isolated rat hearts were aerobically perfused with blood for 20 minutes before being subjected to zero-flow normothermic global ischemia for 35 minutes and reperfusion for 40 minutes. Hearts were perfused at a constant pressure for 60 mm Hg and were paced at 360 beats per minute. Left ventricular developed pressure and ischemic contracture were assessed with an intraventricular balloon. Four groups (n=8 hearts per group) were studied: control hearts with 35 minutes of unprotected ischemia, hearts preconditioned with one cycle of 3 minutes of ischemia plus 3 minutes of reperfusion before 35 minutes of ischemia, hearts subjected to cardioplegia with St Thomas' solution infused for 1 minute before 35 minutes of ischemia, and hearts subjected to preconditioning plus cardioplegia before 35 minutes of ischemia. After 40 minutes of reperfusion, each intervention produced a similar improvement in postischemic left ventricular development pressure (expressed as a percentage of its preischemic value: preconditioning, 44 +/- 2%; cardioplegia, 53 +/- 3%; preconditioning plus cardioplegia, 54 +/- 4% and control, 26 +/- 6%, P<.05). However, preconditioning accelerated whereas cardioplegia delayed ischemic contracture; preconditioning plus cardioplegia gave an intermediate result. Thus, times to 75% contracture were as follows: control, 14.3 +/- 0.4 minutes; preconditioning, 6.2 +/- 0.3 minutes; cardioplegia 23.9 +/- 0.8 minutes; and preconditioning plus cardioplegia 15.4 +/- 2.4 minutes (P<.05 preconditioning and cardioplegia versus control). In additional experiments, using blood- and crystalloid-perfused hearts, we describe the relationship between the number of preconditioning cycles and ischemic contracture. CONCLUSIONS: Although preconditioning accelerates, cardioplegia delays, and preconditioning plus cardioplegia has little effect on ischemic contracture, each affords similar protection of postischemic contractile function. These results question the utility of ischemic contracture as a predictor of the protective efficacy of anti-ischemic interventions. They also suggest that preconditioning and cardioplegia may act through very different mechanisms.  相似文献   

13.
Ischemic preconditioning is known to be mediated by several humoral factors, such as adenosine, norepinephrine, and bradykinin. We examined intracellular signal transduction of ischemic preconditioning following receptor stimulation. Alterations in the pH of the ischemic bed were monitored to assess the response of control and ischemic-preconditioned myocardium to glibenclamide and pertussis toxin. Pentobarbital-anesthetized open-chest dogs were subjected to 40 min of ligation of the left anterior descending coronary artery. Ischemic preconditioning was elicited by 25-min periods of coronary ligation followed by 5 min of reperfusion before a 40-min period of ligation. Glibenclamide (0.3 mg/kg)was given i.v. 20 min before the onset of ischemic preconditioning. Pertussis toxin (6-10 micrograms/kg) was given i.v. 3 days before the experiment. Tissue myocardial pH was measured by a glass micro-pH electrode. Ischemia for 5 min decreased myocardial pH and reperfusion returned it to the preischemic levels. Ischemia for 40 min decreased the myocardial pH from 7.43 +/- 0.06 to 6.43 +/- 0.08. Ischemic preconditioning significantly attenuated the decrease in myocardial pH (6.57 +/- 0.06) induced by 40 min of ischemia. Pretreatment with either glibenclamide or pertussis toxin completely abolished the effect of ischemic preconditioning on ischemic myocardial acidosis. Ischemic preconditioning can attenuate ischemia-induced myocardial acidosis in dogs, and this effect is mediated by activation of adenosine triphosphate-sensitive potassium channels and pertussis toxin-sensitive guanosine triphosphate-binding protein.  相似文献   

14.
Ischemic preconditioning (PC) has been shown to attenuate intracellular acidification during a subsequent period of ischemia, to minimize stunning, and to decrease infarct size, PKC activation has been suggested to be involved in this phenomenon. The present study is designed to test whether PKC activation could mimic and PKC inhibition could block the PC effects on intracellular acidification during ischemia and on stunning during reflow in Langendorff perfused rat hearts. Prior to 20 min of sustained global normothermic ischemia, groups of hearts were treated with the PKC activators 4 beta-phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoyl-srt-glycerol (DOG), a group of hearts was treated with the PKC inhibitor chelerythrine (CH), a group was treated with DOG plus CH, a group was preconditioned with four cycles of 5 min of ischemia and 5 min of reflow, and a group was treated with CH during PC. Recovery of left ventricular developed pressure (% of initial, pretreatment, preischemic LVDP), measured after 20 min of reflow, was improved in hearts treated with DOG, but not PMA (80 +/- 3% (DOG), 55 +/- 3% (PMA) v 51 +/- 3% (control), P < 0.05 between DOG and control), although both caused a similar degree of PKC translocation (measured by fractionation followed by an assay of PKC activity using incorporation of 32P into histone). The improved recovery of LVDP in the PC group and in the DOG group was blocked by chelerythrine. Measurement of pH (by 31P NMR) showed that DOG reduced acidification at 15-20 min of ischemia, although the effect was not as great as PC, while PMA did not reduce acidification. The effect of DOG on pHi was attenuated by CH; however, the PC-induced attenuation of the fall in pHi, was not affected by CH. High energy phosphates (measured by 31P NMR) were not significantly different between any of the groups during ischemia or reflow. This study confirms that the protective effect of ischemic preconditioning on stunning in rat heart can be eliminated by inhibition of PKC, but suggests that the effect of PC on the fall in pHi during sustained ischemia is not mediated by PKC.  相似文献   

15.
A high glycogen level may be beneficial to the ischemic heart by providing glycolytic ATP or detrimental by increasing intracellular lactate and protons. To determine the effect of high glycogen on the ischemic myocardium, the glycogen content of Langendorff-perfused rat hearts was either depleted or elevated before 32 minutes of low-flow (0.5 mL/min) ischemia with Krebs-Henseleit buffer with or without 11 mmol/L glucose, followed by 32 minutes of reperfusion with buffer containing 11 mmol/L glucose. 31P nuclear magnetic resonance spectra were acquired sequentially throughout. Further experiments involved early reperfusion or the addition of HOE 694, a Na+-H+ exchange inhibitor, during reperfusion. When glucose was supplied throughout ischemia, no ischemic contracture occurred, and postischemic recovery of contractile function was highest, at 88% of preischemic function. In the absence of glucose, normal-glycogen hearts underwent ischemic contracture at 5 minutes, had an end-ischemic pH of 6.87, and recovered to 54%, whereas in high-glycogen hearts, contracture was delayed to 13 minutes, the end-ischemic pH was 6.61, and functional recovery decreased to 13%. Contracture onset coincided with the decrease in glycolysis, which occurred as glycogen became fully depleted. Functional recovery in the high-glycogen hearts increased to 89% when reperfused before contracture and to 56% when reperfused in the presence of HOE 694. Thus, during brief ischemia in the high-glycogen hearts, ischemic glycogen depletion and contracture were avoided, and the hearts were protected from injury. In contrast, during prolonged ischemia in the high-glycogen hearts, glycogen became fully depleted, and myocardial injury occurred; the injury was exacerbated by the lower ischemia pH in these hearts, leading to increased Na+-H+ exchange during reperfusion. The contradictory findings of past studies concerning the effect of high glycogen on the ischemic myocardium may thus be due to differences in the extent of glycogen depletion during ischemia.  相似文献   

16.
Effects of azelnidipine, a dihydropyridine derivative, on stunned myocardium were examined in anesthetized open-chest dogs. The left anterior descending (LAD) coronary artery was ligated for 20 min and then released for 60 min. Dimethyl sulfoxide (DMSO), the solvent of azelnidipine, or azelnidipine (0.03, 0.1 or 0.3 mg/kg) was injected i.v. 20 min before ligation. Segment shortening was determined by sonomicrometry. The levels of high-energy phosphate were measured in 60-min reperfused hearts. Azelnidipine at 0.1 and 0.3 mg/kg significantly decreased diastolic blood pressure and increased % segment shortening. The increase in % segment shortening due to azelnidipine appeared to be abolished by propranolol and atropine pretreatment. Ischemia significantly decreased % segment shortening in all groups. The % segment shortening that had been decreased by ischemia recovered during reperfusion, but did not reach its preischemic level in each group. In the 0.1 and 0.3 mg/kg of azelnidipine-treated dogs, a significant enhancement of % segment shortening recovery during reperfusion was observed, as compared with that in the DMSO-treated dogs. Azelnidipine did not affect the high-energy phosphate levels in 60-min reperfused hearts. In conclusion, azelnidipine improved the contractile dysfunction in stunned myocardium, without any preservation of high-energy phosphate.  相似文献   

17.
BACKGROUND: Recently we have reported a novel myo-protective protocol "adenosine-enhanced ischemic preconditioning" (APC), which extends and amends the protection afforded by ischemic preconditioning (IPC) by both reducing myocardial infarct size and enhancing postischemic functional recovery in the mature rabbit heart. However, the efficacy of APC in the senescent myocardium was unknown. METHODS: The efficacy of APC was investigated in senescent rabbit hearts and compared with magnesium-supplemented potassium cardioplegia (K/Mg) and IPC. Global ischemia (GI) hearts were subjected to 30 minutes of global ischemia and 120 minutes of reperfusion. Ischemic preconditioning hearts received 5 minutes of global ischemia and 5 minutes of reperfusion before global ischemia. Magnesium-supplemented potassium cardioplegia hearts received cardioplegia just before global ischemia. Adenosine-enhanced ischemic preconditioning hearts received a bolus injection of adenosine in concert with IPC. To separate the effects of adenosine from that of APC, a control group (ADO) received a bolus injection of adenosine 10 minutes before global ischemia. RESULTS: Infarct size was significantly decreased to 18.9%+/-2.7% with IPC (p<0.05 versus GI); 17.0%+/-1.0% with ADO (p<0.05 versus GI); 7.7%+/-1.3% with K/Mg (p<0.05 versus GI, IPC, and ADO); and 2.1%+/-0.6% with APC (p<0.05 versus GI, IPC, ADO, and K/Mg; not significant versus control). Only APC and K/Mg significantly enhanced postischemic functional recovery (not significant versus control). CONCLUSIONS: Adenosine-enhanced ischemic preconditioning provides similar protection to K/Mg cardioplegia, significantly enhancing postischemic functional recovery and decreasing infarct size in the senescent myocardium.  相似文献   

18.
The role of adrenergic mechanism in the cardioprotective effect of ischemic preconditioning against ischemia-reperfusion induced injury in in vivo dog heart and isolated rat heart was investigated. Anesthetized dogs were subjected to LAD coronary artery ligation for 60 min followed by reperfusion for 4 h. Preconditioning protocol was 5 min of ischemia followed by reperfusion for 10 min. Rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 30 min. Preconditioning protocol was 5 min global ischemia followed by reperfusion for 5 min repeated four times. Infarct size, electrocardiographic changes and release of LDH were estimated to assess the extent of cardiac injury. Preconditioning reduced the infarct size, ST segment elevation and prevented the loss of R wave. Prazosin attenuated the cardioprotective effect of preconditioning in dog. Preconditioning conferred protection against ischemia-reperfusion induced cardiac injury and reperfusion-induced arrhythmias in isolated rat heart. Reserpine pretreatment attenuated this protective effect of preconditioning on reperfusion-induced arrhythmias. These observations suggest the involvement of adrenergic mechanism in the cardioprotective and antiarrhythmic effect of ischemic preconditioning in dog and rat species respectively.  相似文献   

19.
OBJECTIVE: The objective was to evaluate the effect of left ventricular function on cyanotic myocardium after ischemia-reperfusion and to determine the effect of cyanosis on the myocardial antioxidant system. METHODS: Cyanotic hearts (cyanotic group) were obtained from rats housed in a hypoxic chamber (10% oxygen) for 2 weeks and control hearts (control group) from rats maintained in ambient air. Isolated, crystalloid perfused working hearts were subjected to 15 minutes of global normothermic ischemia and 20 minutes of reperfusion, and functional recovery was evaluated in the two groups. Myocardial superoxide dismutase, glutathione peroxidase, glutathione reductase activity, and reduced glutathione content were measured separately in the cytoplasm and mitochondria at the end of the preischemic, ischemic, and reperfusion periods. RESULTS: Mean cardiac output/left ventricular weight was not significantly different between the two groups. Percent recovery of cardiac output was significantly lower in the cyanotic group than in the control group (56.1% +/- 5.7% vs 73.0% +/- 3.1%, p = 0.001). Mitochondrial superoxide dismutase, mitochondrial and cytosolic glutathione reductase activity, and cytosolic reduced glutathione were significantly lower in the cyanotic group than in the control group at end-ischemia (superoxide dismutase, 3.7 +/- 1.3 vs 5.9 +/- 1.5 units/mg protein, p = 0.012; mitochondrial glutathione reductase, 43.7 +/- 14.0 vs 71.0 +/- 30.3 munits/mg protein, p = 0.039; cytosolic glutathione reductase, 13.7 +/- 2.0 vs 23.2 +/- 4.2 munits/mg protein, p < 0.001; and reduced glutathione, 0.69 +/- 0.10 vs 0.91 +/- 0.24 microgram/mg protein, p = 0.037). CONCLUSIONS: Cyanosis impairs postischemic functional recovery and depresses myocardial antioxidant reserve during ischemia. Reduced antioxidant reserve at end-ischemia may result in impaired postischemic functional recovery of cyanotic myocardium.  相似文献   

20.
It has been well documented that ischemic preconditioning limits ischemic-reperfusion injury in cardiac muscle, but the ability of ischemic preconditioning to limit skeletal muscle injury is less clear. Previous reports have emphasized the beneficial effects of ischemic preconditioning on skeletal muscle structure and capillary perfusion but have not evaluated muscle function. We investigated the morphologic and functional consequences of ischemic preconditioning, followed by a 2-hour period of tourniquet ischemia on muscles in the rat hindlimb. The 2-hour ischemia was imposed without preconditioning, or was preceded by three brief (10 minutes on/10 minutes off) preischemic conditioning intervals. We compared muscle morphology, isometric contractile function, and muscle fatigue properties in predominantly fast-twitch, tibialis anterior muscles 3 (n = 8) and 7 (n = 8) days after ischemia-reperfusion. Two hours of ischemia, followed by reperfusion, results in a 20 percent reduction of muscle mass (p < 0.05) and a 33 percent reduction in tetanic tension (p < 0.05) when compared with controls (n = 8) at 3 days. The same protocol, when preceded by ischemic preconditioning, results in similar decreases in muscle mass and contractile function. Neuromuscular transmission was also impaired in both ischemic groups 7 days after ischemia. Nerve-evoked maximum tetanic tension was 69 percent of the tension produced by direct muscle stimulation in the ischemia group and 65 percent of direct tension in the ischemic preconditioning/ischemia group. In summary, ischemic preconditioning, using the same protocol reported to be effective in limiting infarct size in porcine muscle, had no significant benefit in limiting injury or improving recovery in the ischemic rat tibialis anterior. The value of ischemic preconditioning in reducing imposed ischemic-reperfusion-induced functional deficits in skeletal muscle remains to be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号