首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为解决地下管道机器人难以定位的问题,基于惯性测量单元设计了一款多传感器融合的定位系统。系统搭载六轴惯性测量器件对地下管道机器人进行加速度和角速度的测量,搭载里程计对地下管道机器人进行位移的测量,采用四元数法进行角度姿态解算,融合卡尔曼滤波算法对定位系统进行误差补偿,从而实现了地下管道机器人的定位。  相似文献   

2.
人体运动跟踪中MEMS姿态测量单元设计与测试   总被引:1,自引:0,他引:1  
人体运动姿态的实时跟踪在运动员辅助训练和康复医学中有广泛应用.设计了应用于人体运动姿态测量的MEMS姿态测量单元.该姿态测量单元包含三轴正交的MEMS加速度计、磁强计和角速率陀螺,集成微控制器以及扩展数据存储的FLASH芯片,单元大小为38 mm×28 mm×13 mm.姿态角解算采用基于四元数的扩展卡尔曼滤波算法.提出了一种利用单轴转台和楔角器进行姿态测量单元3个姿态角误差测试的新方法.测试结果表明:3个姿态角测量误差均小于2°,满足人体运动姿态测量的精度要求.  相似文献   

3.
针对微惯性测量组件在微型机器人、小型无人飞行器等微惯导领域应用为研究背景,开展了微惯性组件中融合多种传感器信息的姿态测量方法研究。通过陀螺仪,加速度计,磁阻传感器等微惯性传感器的测姿方法,对不同传感器组合测试得到结果进行数据融合,选择融合测姿结果作为观测数据,随后联合无迹卡尔曼滤波器进一步准确估计载体姿态。采用研制的微惯性组件与商用AHRS系统搭建了实验平台,开展了不同算法下的人体姿态测量实验,实验结果验证了算法的有效性。  相似文献   

4.
小型飞行器MEMS姿态测量系统   总被引:3,自引:1,他引:2  
针对目前可获得的微机电系统(micro electromechanical system,简称MEMS)惯性测量元件,提出一种用于小型飞行器的姿态测量系统实现方案,采用三轴加速度计和单轴速率陀螺构建系统,可满足飞行器加速度小于6g、角速度小于±300(°)/s的姿态测量需求。根据所选MEMS惯性传感器的特点,给出传感器的测试方案和测试结果,利用加速度计测量信息直接修正方向余弦矩阵来抑制姿态角的误差积累,并进行姿态测量试验。试验结果表明:系统以100Hz的频率更新姿态测量值,在满足姿态矩阵修正阈值的条件下,姿态测量误差小于1(°)。  相似文献   

5.
针对由三轴磁传感器、三轴加速度计和三轴速率陀螺构成的九轴传感器航姿系统,基于九轴传感器的姿态解算方法,详细分析了传感器的误差来源并建立了与之相适应的误差数学模型;根据传感器自身特点和九轴传感器的测量特点提出了相对应的误差补偿算法。试验结果表明,磁通门传感器的航向角最大误差由补偿前2.6°降低为补偿后0.19°;补偿后加速度计的俯仰角最大误差为0.19°,倾斜角最大误差0.19°;速率陀螺的静态误差补偿在4 min之内航向角误差为±0.2°,俯仰角补偿后误差±0.3°,倾斜角补偿误差±0.3°;当速率小于14.7(°)/s时,动态误差控制在±0.95°。  相似文献   

6.
在利用惯性传感器求解姿态时,常通过陀螺仪融合加速度计以卡尔曼滤波体系计算姿态,此方法依赖历史状态,尤其在加速度存在干扰的情况下会产生误差积累,导致融合算法在长时间的误差积累下很难获取准确的姿态信息。此外,在资源受限的空间环境中,对于加速度的校正成本与速度也有较高的要求。针对以上问题,提出一种无误差积累的加速度快速校正算法。利用融合角速度可以得到较准确的加速度差分信息的特点,使用传感器的少量测量数据列出加速度与其差分关系的方程组,并在重力方程的约束下解算方程组,进而解算加速度。实验表明算法能获得较准确的加速度,且解算速度较卡尔曼滤波体系提高10倍。  相似文献   

7.
为有效消除磁梯度张量系统传感器阵列间非对准误差和传感器系统误差对测量精度造成的影响,提出了一种只需绕系统任意轴旋转一周便可理论上实现所有磁传感器与参考平台正交系间精确校准方法。利用两组无数学简化的非线性转换构建传感器系统误差线性校正模型,仅需同一旋转周期的10组测量数据便能得到参考平台与各传感器的理想正交输出。通过构建磁传感器三轴横倾、俯仰、方位转换的旋转矩阵,得到传感器空间任意姿态的非对准误差校正模型并对旋转角进行最小二乘估计,仅需同一旋转周期的3组测量数据便能对准张量系统。仿真和实测结果表明:在理想情况下仿真参数估计准确率接近100%,实验校正后各传感器输出具有较高重合与同轴性,张量分量RMSE(均方根误差)小于30nT/m。能以较简单步骤和较少采样数据高效提高差分法磁梯度张量系统测量精度。  相似文献   

8.
研究了利用管道清管器(PIG)搭载惯性测量单元(IMU)实现管道三维地理坐标测量的方法。该方法以捷联惯导系统(SINS)定位为主,并辅以校正信息的Kalman滤波估计算法来解决SINS计算的发散问题。首先,将测量装置搭载在PIG上,PIG在管道中运动的同时记录惯性信号。然后,经离线计算得到管道的三维地理坐标,并利用IMU的姿态倾角和里程轮速度对SINS计算的误差进行校正。最后,建立了9维状态量Kalman滤波模型方程,并利用扩展Kalman滤波算法进行求解。实验结果显示,该系统对于30m管道的测量精度为0.28m;表明通过加入校正算法,可以实现内检测条件下对管道三维地理坐标的精确测量。  相似文献   

9.
海洋浮标受海洋动力环境影响产生运动,会对平台及仪器的可靠性产生影响,甚至会导致测量误差,影响海洋观测浮标 工作安全性和数据质量,因而浮标运动姿态的精确测量研究具有重要价值和意义。 本文通过搭建微型惯性测量单元(MIMU) 与全球导航卫星系统(GNSS)结合的硬件系统,获取浮标运动姿态相关数据,并采用载波相位平滑滤波模型进行数据预处理,融 合最小二乘降相关算法(LAMBDA)解算浮标姿态数据,获取高精度动态浮标姿态。 经过摇摆台模拟比对实验,系统姿态角均方 根误差小于 0. 5°,水平速度均方根误差小于 0. 05 m/ s。 通过实际海试实验,尤其是台风过境期间系统的测试结果,证明该系统 工作稳定可靠,无数据发散现象,整体有效数据达到了 95% 以上。  相似文献   

10.
嵌入式GPS/MIMU/磁罗盘组合导航系统   总被引:4,自引:2,他引:4  
研制出基于FPGA和DSP的嵌入式GPS/MIMU/磁罗盘组合导航系统。该系统硬件由石英微机械陀螺仪、石英挠性加速度计、GPS接收机、数字磁罗盘和基于FPGA和DSP的高速导航计算机模块等组成。在该系统软件方面,采用圆锥误差补偿与划船误差补偿的现代捷联导航算法和含传感器噪声模型的18维扩展Kalman滤波器,并利用惯性传感器和MIMU导航信息对GPS和磁罗盘信号进行质量控制。经车载试验结果表明,该组合导航系统水平姿态误差小于0.2°,航向角误差小于0.3°,定位精度小于3m。  相似文献   

11.
动态倾角传感器及其传递特性的研究   总被引:1,自引:0,他引:1  
通过分析惯性传感器在姿态检测系统中的优缺点,提出一种简易互补滤波算法对陀螺仪和加速度计进行数据融合,生成动态倾角信号.利用角度测试装置测试该基于互补滤波的倾角传感器的动态特性,通过系统辨识获取该传感器的传递函数.辨识结果表明,该动态倾角传感器有效去除加速度计动态情况下的干扰和陀螺仪累积漂移误差,及时跟踪系统倾角变化,得到比较准确的动态角度值.  相似文献   

12.
轨道空间线形检测是保障列车运行安全的一项关键技术,受陀螺仪及加速度计的累计误差的影响,使得基于常规的惯性单元的轨道线形检测方法在低速连续运动测量下精度较低。为了解决该问题,提出一种基于机器视觉与惯性信息多传感器融合的轨道空间线形检测方法。通过分别建立惯性测量单元与机器视觉转换矩阵,倾角仪与惯性测量单元旋转矩阵及惯性测量单元与机器视觉平移关系矩阵,将动态测量数据转换到世界坐标系下,实现多传感器间的融合定标。利用扩展卡尔曼滤波将机器视觉与惯性信息进行融合,提高检测精度。最后,通过搭建测量平台进行实验验证,结果表明该方法的测量精度小于0.5mm且标准差低于0.3。与常规惯性测量方法相比,测量精度提高近10倍。  相似文献   

13.
井下钻具姿态惯性测量单元(IMU)的安装误差降低了近垂直姿态的测量与解算精度。基于近垂直姿态下测量值与理论值之间的关系矩阵,推导其关系矩阵各项的相对误差,分析表达式各项相对误差特征,提出一种单象限校正方法。近垂直姿态下,采用单一象限内相对均匀的三组测量值得到一个校正矩阵,并对该象限内全部测量数据进行校正。姿态解算结果表明,与传统方法相比,单象限校正方法能有效提高姿态参数解算精度3.3倍以上。  相似文献   

14.
以3轴加速度传感器和3轴磁通门传感器为基础,设计了定向传感器的角度测量模型;通过对传感器温度误差和安装误差的分析,研究了影响传感器精度的因素,提出了能有效提高传感器测量精度的误差校正模型.以微控制器MSP430F149和模数转换器ADS1216为核心,设计了硬件滤波电路和信号采样电路;基于角度测量模型和误差校正模型,给出了姿态参数采集的主程序和误差补偿程序流程图.实验分析表明:在高温高压强振的环境下该系统达到了所提出的精度指标.  相似文献   

15.
基于递推最小二乘法的地磁测量误差校正方法   总被引:5,自引:0,他引:5       下载免费PDF全文
龙礼  黄家才 《仪器仪表学报》2017,38(6):1440-1446
针对弹体地磁测量容易受到各种误差影响而导致地磁姿态测量精度降低的问题,在分析自身误差和环境误差的基础上,对椭球模型的地磁测量误差进行建模,采用最大似然估计解算静态误差补偿参数,以解算结果为初值,通过递推最小二乘法推到补偿参数的实时更新算法,综合以上研究,形成用于地磁测量误差补偿的在线组合校正方法。仿真及实验结果表明,在接近盲区方向的最大姿态角误差小于5°,在线组合校正能够保证姿态检测系统在不同射向条件下的精度。  相似文献   

16.
针对单个MEMS惯性测量单元存在积累误差的问题,开发了一套基于STM32的多惯性测量单元数据采集系统,为后续研究提供真实可靠的数据源。该系统主要包括数据采集、数据实时显示和数据存储三个功能模块。数据采集模块利用STM32单片机实现了多个惯性测量单元的数据采集与融合;数据实时显示模块和数据存储模块完成了对多个惯性测量单元输出的加速度、角速度和姿态数据的实时显示与自动存储。经过多次测试,结果表明该系统性能稳定可靠,可用于工程实践中。  相似文献   

17.
针对四旋翼飞行器MEMS惯性测量单元姿态估计过程中存在的漂移和噪声问题,提出了一种基于互补滤波的改进算法。建立了以MPU9250为姿态测量单元的四旋翼飞行器测试平台。分别在静态和动态条件下,收集和比较了不同方法获得的姿态数据,包括信息融合的卡尔曼滤波算法,传统互补滤波的数据融合,以及改进的滤波融合算法。实验结果表明,改进的姿态融合算法在不同条件下具有较高的估计精度和最终姿态角的漂移和噪声误差较小的优点,易于在低成本的飞机控制系统中实现。  相似文献   

18.
为了解决巡飞弹空中上电后在无参考姿态条件下的初始姿态确定问题,采用低成本磁力计、陀螺仪和加速度计(MARG)传感器设计姿态航向参考系统(AHRS),并提出了一种自适应参考矢量权重的快速初始姿态估计(AFCF)算法。首先,提出了三轴传感器使用前的快速误差校准方法;然后,采用快速互补滤波算法进行姿态估计,分析了其权重函数对于初始姿态估计及收敛性等的影响;接着,提出自适应参考矢量权重及自适应姿态估计方法;最后,利用高精度MTI(Milliren Technologies,Inc)传感器数据对算法进行了验证,并在低成本MARG姿态航向参考系统中对算法进行了实现,对比了改进算法及扩展卡尔曼滤波(EKF)算法的性能。实验结果与分析表明:动态条件下采用MTI传感器数据,改进算法能够在初始时刻收敛,比快速互补滤波(FCF)算法提前约4s;解算精度约为±0.6°,初始时刻精度明显优于FCF;硬件测试则表明改进算法的处理时间为0.062ms,仅为EKF算法的1/9,解算精度约为±1.3°,能够满足姿态测量过程快速收敛、高精度、实时性等要求。  相似文献   

19.
采用电磁跟踪系统对人体上肢运动数据进行测量,建立人体上肢的简化模型,并在此基础上布置传感器,达到实时跟踪的目的.提出一种通过电磁跟踪系统各个传感器得到的数据计算关节旋转矩阵的新算法,从而计算出上肢运动时各关节旋转角度,可用于对人体上肢日常活动范围的测量.  相似文献   

20.
张彤  孙玉国 《光学仪器》2015,37(1):28-30
由于测控成本和有效载荷的限制,一般采用微机电系统(MEMS)惯性传感器来测量小型无人机的飞行姿态。在MC9S12XS128单片机上通过嵌入式软件编程实现了卡尔曼滤波算法,并在JZJ-1型自准直仪转台上对MEMS加速度计和陀螺仪的输出信号进行了数据融合试验,较好地解决了MEMS惯性测量系统的零漂和机械振动干扰问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号