首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了探究不同形式的风挡对高速列车气动性能的影响,运用数值模拟的方法,采用三维、定常、可压缩雷诺时均方程和κ~ε两方程湍流模型,对配备了3种不同形式风挡(仅具内风挡、内风挡+半开放式外风挡、内风挡+全封闭式外风挡)的3辆编组的CRH380A型高速列车的气动性能从气动阻力和气动升力两个方面进行了研究。研究表明,采用不同形式风挡的高速列车的气动阻力系数:仅具内风挡工况>内风挡+半开放式外风挡工况>内风挡+全封闭式外风挡工况,可见采用内风挡+全封闭式外风挡有利于减小高速列车在运行过程中的气动阻力;当列车运行速度低于350 km/h时,采用不同形式风挡的高速列车的气动升力系数:内风挡+全封闭式外风挡工况>仅具内风挡工况>内风挡+半开放式外风挡工况;仅具内风挡时,头车和尾车升力系数的绝对值较大,增加外风挡后头尾车升力状况有所改善。  相似文献   

2.
车端外风挡是动车组车端连接的重要组成部分,本文针对新一代高速动车组车端外风挡的空气动力学性能进行研究,通过流固耦合的数值仿真方法,分别对不同侧壁宽度橡胶外风挡方案进行了气动载荷作用下的受力及位移分析,通过仿真结果对比不同方案外风挡结构流场和动态响应特性,并对不同结构方案外风挡动力学性能进行评估。  相似文献   

3.
针对铁路提速后高速列车集电部气动噪声过大的问题,在集电部引入导流罩,应用Fluent对不同速度下含导流罩及不含导流罩的外流场和气动噪声分别进行数值模拟和分析。计算结果表明,引入导流罩后集电部的气动噪声有明显降低,集电部产生的气动噪声以偶极子声源为主。  相似文献   

4.
针对高速地铁列车空气阻力直接影响列车运行速度、能耗及安全,采用三维数值模拟方法对6编组全尺寸列车运行在设置有通风竖井的区间隧道的列车空气阻力进行研究,对隧道内空气阻力随时间变化、列车各节车厢阻力的分布特性、每节车厢转向架在整车阻力所占的比重情况进行分析.研究结果表明:列车逐渐向竖井靠近的时间段内,阻力系数一直在下降,最小值为1.57;在经过竖井的时间段,阻力系数大大增加,最大值为4.85,是最小值的3.08倍.列车匀速行驶时,尾车空气阻力在整车中占比最大,头车略小,分别为39.6%和24.7%;过竖井正下方时,头车空气阻力占比是整车的一半之多,达到了53.9%.过竖井前,前5节车厢转向架阻力在35%~45%内波动,尾车的仅占12.7%;过竖井时,4车厢转向架阻力占比最大,最大值为52.7%,头车的降到了17.0%;过竖井后,中间4车厢转向架区域占比最大,头车尾车的占比略小.  相似文献   

5.
以Lighthill声类比理论为基础,采用计算流体力学的方法得出列车高速运行时车体表面的偶极子声源分布数据,在此基础上采用边界元法求解得到高速列车通过时周边气动噪声的分布情况,对铁路沿线气动噪声的分布规律进行探讨,得出偶极子声源的辐射规律,并分析声屏障对铁路边界气动噪声传播规律的影响及其对沿线噪声的抑制作用。  相似文献   

6.
高速列车转向架区的噪声包含气动噪声、轮轨噪声和设备(结构)噪声,为了将这几种噪声进行分离,将工况传递路径分析(operational transfer path analysis,简称OTPA)技术用于转向架区气动噪声分离。低速运行工况,转向架区的噪声主要是轮轨噪声和由电机、轴箱、齿轮箱等动力设备产生的结构噪声,气动噪声很小可以忽略不计,通过低速运行工况的传递路径分析可以得到轮轨声和结构声路径的传递函数;高速运行工况,转向架区目标点的噪声是3种噪声贡献叠加的结果,在假定轮轨噪声和结构噪声传递函数不随速度变化的前提下,用低速运行工况下的传递函数可以求得轮轨噪声和结构噪声的贡献量,与目标点总值比较,差异部分即为气动噪声的贡献量。分离结果表明,气动噪声占主导的速度转折点出现在200 km/h,350 km/h速度级下气动噪声的贡献量达到60%,轮轨噪声的贡献量约为30%,仍不可忽略。  相似文献   

7.
针对高速列车受电弓区域气动噪声问题,采用大涡模拟和FW-H声学模型重点对列车在250 km/h、350 km/h运行时受电弓导流罩气动噪声进行数值模拟,建立了车体+受电弓导流罩的计算模型,分析导流罩表面偶极子声源分布和气动噪声频谱特性。研究结果表明:350 km/h下导流罩表面气动噪声整体大于250 km/h;两种速度下导流罩表面偶极子声源分布规律在频域表现一致:在高频阶段声压级明显低于低频阶段,5 000 Hz下最大声压级仅为20 Hz下的40%;导流罩表面最大声压级都诱发于凹腔与后引导面的过渡处,20 Hz下分别可达136 dB、143 dB。此外,导流罩近场和远场气动噪声频谱曲线相似,均是一种宽频噪声,且能量主要集中在150~950 Hz,对后续更高速级列车受电弓导流罩降噪结构设计和隔声材料的选取有一定实际参考意义。  相似文献   

8.
为研究风沙耦合作用对高速列车运行状态的影响,基于流体动力学理论建立高速列车空气动力学模型。采用三维、定常、不可压雷诺时均Navier-Stokes方程和标准κ-ε两方程湍流控制模型,模拟计算列车在平地、路堤和桥梁上行驶时的气动特性。沙粒采用欧拉-拉格朗日方法进行离散化处理,气流为连续化处理,这种处理方式与风沙自然状态非常吻合。研究结果表明:高速列车在有沙环境下的表面压力远大于无沙环境;列车头车受到的气动阻力最大,且沙粒对头车阻力的影响极为显著,较无沙环境头车阻力增加了(10~12)%;头车受到的倾覆力矩最大,尾车受到的倾覆力矩最小,方向与头车的受力相反;桥梁路况最大正压区相对较大,且列车两侧压力差最大,桥梁迎风侧凹槽处产生漩涡,背风侧产生双回流现象,致使气动性能最差。  相似文献   

9.
宋琛  张继业  刘楠 《机械》2016,(6):36-41
为研究高速列车在风沙环境下的气动特性,基于多相流中的欧拉模型理论,建立了高速列车空气动力学模型。数值计算分析了高速列车在0°与90°风向角下的气动特性变化规律。计算结果表明:与无沙情况相比,列车在0°与90°的风向角下,头车的正压区域变大,尾车的正压区域变小,沙尘对头车的冲击最为严重;在0°风向角有沙情况下,列车头车、中间车、尾车的阻力均增大,列车总阻力增大6%左右,头车向下的升力与尾车向上的升力均变大,中间车的升力基本不变;在90°风向角有沙情况下,头车与中间车的阻力变大,尾车阻力变小,列车的总阻力变大,头车、中间车和尾车的升力均减小、侧力均增加。  相似文献   

10.
李虎  金阿芳  刘芳  李文涛 《机械设计与制造》2022,374(4):187-191+195
为研究高速列车在风沙环境中运行时的空气动力学性能及冲蚀特性,基于Navier-Stokes方程和标准κ-ε方程控制模型,运用FLUENT软件中离散相模型(DPM)对沙粒进行离散化处理,对气流进行连续化处理。数值模拟了高速列车运行速度为250km/h,风速为20m/s时,高速列车在风沙环境下的表面压力、气动阻力、黏性力及冲蚀特性,采用欧拉-拉格朗日方法进行求解计算。研究结果表明:列车在高速运行时最大正压主要在分布在车头鼻翼处,受风沙影响时列车的表面压力有所增大;列车运行的速度越大或沙粒颗粒直径越大,车头冲蚀越严重;在风沙环境下行驶时,头车阻力系数增加了32%,车尾增加了25%,升力和黏性力有不同程度的减少。  相似文献   

11.
提出一种对称安装于列车车体两侧的创新型风阻制动装置,基于Realizable k-ε方程,针对3种不同的结构布局进行了非定常数值模拟,对纵向流场流速进行了比较分析,得出了最为经济合理的布置。对于不同时速下翼型风阻制动板制动效果进行了比较,结果表明,列车速度越高,翼型风阻板提供的辅助制动效果越显著。期望为高速列车的辅助制动领域提供一种新思路,为风阻制动板设计和研究提供更多的依据。  相似文献   

12.
依据已建立的复合材料塞拉门数值分析等效模型,利用ANSYS数值模拟了高速列车塞拉门在6 000Pa面静载荷下的响应,并通过实验对模拟结果进行了验证。  相似文献   

13.
游守庆  张继业  李田 《机械》2016,(8):50-54
转向架作为高速列车气动阻力的一个重要来源,其周围流场结构较为复杂。基于三维定常可压缩N-S方程和κ-ε两方程湍流模型,建立了高速列车空气动力学模型,采用有限体积法对时速为350 km/h的高速列车转向架空气动力学性能进行了数值模拟。研究了转向架周边流场结构和转向架阻力分布特性,结果表明:由于轮对的旋转,转向架轮对附近会产生较多的涡流,流场结构变得更复杂;考虑轮对旋转后转向架总阻力会有所增加,且分布规律也会发生一定的变化。  相似文献   

14.
邱利伟  王金  支锦亦  王超 《机械设计》2019,36(6):139-144
为提升动车组列车设计方案气动外形的选型效率,保证列车良好的气动性能,提出基于数值模拟方法的高速动车组列车气动性能评估模型,并利用流体力学分析软件Fluent对时速400 km/h的7种型号的8编组动车组列车设计方案进行气动性能分析,包括各车体及整车的压差阻力、阻力、阻力系数、升力、升力系数等气动参数。结果表明:整车的压差阻力、整车阻力、整车阻力系数、尾车升力、尾车升力系数在揭示最佳气动外形方案时结果基本是一致的。提出的列车气动评估方法和气动参数有利于对列车设计方案中的最佳气动外形选型。  相似文献   

15.
拖车转向架气动噪声数值研究   总被引:1,自引:0,他引:1  
拖车转向架作为高速列车最主要的气动噪声声源,由于其结构复杂、细小部件多、周围涡流分布紊乱等,对拖车转向架的气动力和气动噪声认识甚少。采用定常RNG k-ε湍流模型与宽频带噪声源模型对拖车转向架的气动阻力、气动升力和气动噪声声源进行初步探讨,并结合非定常大涡模拟与Lighthill声学比拟理论对其进行远场气动噪声分析。计算结果表明:较大漩涡存在于空气弹簧与抗蛇形减振器之间、迎风侧轴箱与构架侧梁外侧的邻近区域;气动阻力、气动升力与运行速度的平方成正比关系,占总气动阻力最大的部件依次为构架(24.02%)、轮对(19.30%)、枕梁(18.08%)、制动闸片、抗侧滚扭杆、制动盘、构架支架和空气弹簧,枕梁的气动升力最大且占总气动升力的157.88%左右;轮对、构架、制动闸片、制动盘、枕梁、垂向减振器、抗侧滚扭杆等凸起部位的迎风侧表面为拖车转向架的气动噪声源,且构架对拖车转向架总噪声的贡献量最多,其次为轮对,然后为盘形制动装置和枕梁,抗侧滚扭杆、垂向减振器、空气弹簧和横向减振器对总噪声的贡献量较少。拖车转向架远场气动噪声是宽频噪声,具有噪声指向性、衰减性和幅值特性等,主要能量集中在28~56 k Hz频率范围内,中心频率为50 Hz、100 Hz、160 Hz在低频部分能量较大且分布规律不随运行速度的改变而变化。  相似文献   

16.
在高速电梯中,轿厢运动阻力剧增,各类涡流损失加剧,给系统经济性、安全性和舒适性带来隐患。文中为分析轿厢外缘流场的气动特性,建立计算流体力学数值模型,采用弹性光顺结合局部重构方法动态生成网格,对加装不同形状(三角形、梯形、椭圆形和车头形)导流罩的高速电梯轿厢进行了模拟。结果表明:加装导流罩可以有效改善流场分布,降低轿厢阻力系数;不同导流罩形状对电梯轿厢外缘的气动特性影响差异显著;与传统对称形导流罩相比,车头形导流罩的效果最好,其减阻比例高达80.21%。  相似文献   

17.
应用FLUENT软件对某高速列车客室内的流场和温度分布进行了数值模拟,基于非稳态k-w湍流模型,分别对夏季、冬季送风情况下客室内的温度分布进行分析。研究结果表明,客室空调原送风孔对应的流场和温度分布不能满足客室舒适性要求。通过优化客室送风孔孔径,流场和温度分布的计算结果基本满足客室舒适性要求。根据以上的仿真计算结果对该高速列车的通风系统提出了合理的改进建议。  相似文献   

18.
提出了高速列车头车远场气动噪声的改进方案,并进行了仿真研究。首先完成了9组不同车头形状的全尺寸头车模型和流场流域的创建,并通过k-ε湍流模型计算稳态流场;其次在稳态流场的基础上,采用宽频带噪声模型计算了头车表面的气动噪声源;利用大涡模拟(LES)方法计算瞬态流场,进而获取车身外表面的压力;再基于瞬态流场,采用Lighthill声比拟理论研究了头车的远场气动噪声的计算。最后,将不同形状头车的气动噪声的仿真分析结果相对比,验证改进方法的可行性。这里的研究,将对高速列车噪声的有效控制提供一定的技术支持,有着较重要的科学意义和实际研究价值。  相似文献   

19.
《机械设计与制造》2017,(Z1):137-140
随着运行速度的提高,高速列车的通过噪声显著增加,由于气动噪声与列车运行速度的4~8次方成正比,气动噪声有可能成为高速列车的主要噪声源。基于Lighthill声类比理论的混合方法,结合完美匹配层边界条件和高阶单元,利用有限元法对CRH380A型高速列车远场气动噪声特性进行了计算分析,得到了列车远场噪声的分布情况、影响区域和传播方向。结果表明:高速列车表面偶极子噪声源由车身向列车四周辐射,随着距车身距离的增加,辐射噪声不断衰减;随着频率的增加,高速列车周围各处噪声均下降,高声压级噪声的区域缩小,声压级分布渐趋于均匀;列车运行速度为300km/h时,标准测点处的噪声时域等效声压级为87.11dB,与实验实测值接近;不同运行速度下,标准测点处的噪声在很宽的频带内存在;随着运行速度的增加,标准测点处噪声声压级在频域和时域内都增加。  相似文献   

20.
分析了飞机整体圆弧风挡玻璃弯曲成形过程及弯曲成形中玻璃板料的回弹机理,建立其有限元模型.在有限元软件ABAQUS中利用显示动力算法和隐式静力算法分别对风挡玻璃弯曲成形和回弹变形进行数值模拟,研究模具的弯曲半径、玻璃的加热温度、玻璃板材的厚度,摩擦大小等因素对弯曲回弹的影响,为实际生产提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号