首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为提高阿维菌素叶面沉积率及其抗紫外分解性能,本文设计构建了叶面亲和的纳米载体。通过自由基聚合将聚二甲基二烯丙基氯化铵(PDMDAAC)改性玉米醇溶蛋白(Zein),得到表面携带正电荷的改性玉米醇溶蛋白,并将其用于负载阿维菌素。采用红外光谱(FTIR)、扫描电镜(SEM)等手段对改性产物结构和形貌进行表征。通过反溶剂沉淀法制备了平均粒径为64.92nm的载药纳米粒子,载体对阿维菌素的包封率为(34.75±0.18)%。与植物表面的静电作用提升了纳米粒子悬浮液在植物表面的润湿性能,接触角大小随PDMDAAC接枝量增大而降低,由77.38°减小到64.60°;叶面滞留量可达33.69mg/cm2。改性玉米醇溶蛋白对阿维菌素的包覆提升了其抗紫外性能,半衰期由15min延长至40min,且阿维菌素的释放速率可通过PDMDAAC接枝率进行调控。  相似文献   

2.
以维生素E为芯材、玉米醇溶蛋白(Zein)为壁材、醇醚糖苷(AEG)为乳化剂、甘油(VG)为助乳化剂,通过正负相凝聚法制备维生素E-玉米醇溶蛋白纳米胶囊(VE/Zein-NC)。以包封效率和粒径为指标,通过单因素试验优化制备工艺,并研究纳米胶囊抗氧化能力。结果表明,VE/Zein-NC的最佳制备工艺为:玉米醇溶蛋白质量浓度为2.5 mg/m L、乙醇质量分数为75%、正负相体积比为1∶2。此条件所制备的VE纳米胶囊的包封率达到85.37%±0.46%,VE/Zein-NC平均粒径为305.49 nm,多分散系数为0.038,分散性良好,水分含量低,储存30 d后抗氧化能力可达未经处理VE的2.47倍。  相似文献   

3.
研究了微射流技术制备的阿魏酸纳米醇质体经皮递送和抗氧化性能。首先,采用响应面法研究了卵磷脂、边缘活化剂(蔗糖棕榈酸酯、吐温-80)对阿魏酸纳米醇质体包封率的影响,优化得到:卵磷脂、蔗糖棕榈酸酯与吐温-80为0.68%∶0.51%∶0.25%(w/%)时,所制备的阿魏酸纳米醇质体粒径小且分布均匀((104.5±0.7) nm),PDI为0.05±0.01,包封率高(88.8%±2.6%),稳定性高(25℃稳定存放60天)。其次,采用DPPH自由基清除实验和Franz扩散池体外透皮实验分别评价了阿魏酸纳米醇质体的抗氧化性能和经皮递送性能,阿魏酸纳米醇质体的IC50值为8.7μg/mL,抗氧化活性略高于阿魏酸丙二醇水溶液(IC50值为11.7μg/mL);阿魏酸纳米醇质体皮肤滞留量和累积透过量分别为(18.2±3.5)μg/cm2和(25.3±3.2)μg/cm2,分别是阿魏酸丙二醇水溶液的1.2倍和1.4倍。研究发现,制备的阿魏酸纳米醇质体粒径均一、包封率高、稳定性好且抗氧化性高、经皮吸收性能好,有望用...  相似文献   

4.
以成型、烘焙处理后的玉米秸秆为原料,磷酸作为活化剂制备了玉米秸秆基活性炭,并对活性炭样品进行表征。同时以碘吸附值、亚甲基蓝吸附值和焦糖脱色率为指标测定其吸附性能,并对制备条件进行优化。实验结果表明:玉米秸秆制备活性炭的最佳工艺条件为浸渍比即m(55%H3PO4)∶m(玉米秸秆)为4∶1、活化温度400℃、活化时间100 min,此条件下活性炭的得率为47.78%,制得的活性炭具有良好的吸附性能,碘吸附值、亚甲基蓝吸附值及焦糖脱色率分别达到864 mg/g、 210 mg/g和100%。活性炭比表面积可达1 105 m2/g,总孔容积为0.745 cm3/g,微孔孔容为0.287 cm3/g,中孔孔容为0.354 cm3/g,孔径分布集中于5 nm以内,约占73.56%,平均孔径为2.697 nm。FT-IR分析显示:在活化过程中磷酸与玉米秸秆发生交联作用,生成的活性炭损失了玉米秸秆的部分官能团。  相似文献   

5.
通过溶液法合成丙烯酸树脂并表征,然后将其添加到环氧树脂中在镁合金表面制备涂层,通过冲击、柔韧性结合电化学阻抗技术(EIS)研究丙烯酸树脂加入对环氧涂层力学及防护性能的影响。研究结果表明,与纯环氧树脂防腐涂层相比,加入丙烯酸树脂后涂层与基体之间的附着力提高了2 MPa、耐冲击性和疏水性均有改善;添加丙烯酸树脂的涂层在浸泡1 656 h后的阻抗为1.25×109Ω·cm2,而环氧清漆涂层的阻抗仅为3.85×107Ω·cm2;因此加入丙烯酸树脂后使环氧涂层有更优异的防腐性能。  相似文献   

6.
为提高纯蔗渣纤维素膜的包装性能,通过热处理和氢键作用制备性能优良的蔗渣纤维素/聚乙烯醇(PVA)复合膜。对复合膜的结构、力学性能、阻隔性、耐水性等进行综合表征分析。结果表明,经过170℃热处理后,含4%PVA的蔗渣纤维素复合膜的综合性能最佳。由于纤维素与PVA之间氢键以及热处理后醚键的共同作用,复合膜拉伸强度与断裂伸长率分别达到了52.83 MPa和26.32%,相比纯纤维素膜分别提高了约33%和500%。PVA的引入使得复合膜的氧气透过率[0.75×10-14 cm3·cm/(cm2·s·Pa)]相比纯纤维素膜[3.6×10-14 cm3·cm/(cm2·s·Pa)]降低了5倍。此外,复合膜的力学性能与透氧性能对高湿度的敏感性较低,表明其有良好的耐水性。综合分析表明,复合膜在食品包装材料方面,具有潜在的应用前景。  相似文献   

7.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

8.
选用玉米醇溶蛋白(zein)作为鞘层包裹材料、木质素磺酸钠(SLS)作为芯层强化材料,采用同轴电纺技术制备了可有效吸附重金属离子的zein-SLS纤维膜。优化了膜制备工艺条件,确定纺丝电压适宜为14 kV,芯鞘层进料速率比适宜为1∶1。TEM证实,SLS被成功包埋于zein纤维膜中,但其负载量、包埋率和流失率受溶液pH的影响。离子吸附测试结果表明,SLS的加入可强化zein纤维膜对三种金属离子Ni2+、Zn2+、Cd2+的吸附效果,其中对Zn2+吸附能力的强化效果最为显著,上述吸附过程符合准二级吸附动力学模型。同时,在酸性条件下,随着pH的上升,zein纤维膜对Ni2+、Zn2+、Cd2+的吸附能力逐渐提高。  相似文献   

9.
以氯化锌浸渍的木屑为原料,黏土为粘结剂,制备炭陶复合吸附材料。讨论了炭化温度和保温时间对其吸附性能的影响,并对其孔隙结构进行了表征。结果表明,随温度和保温时间的增加,炭陶复合吸附材料的碘吸附值和亚甲基蓝吸附值呈先上升后下降的趋势;木屑受到活化作用形成活性炭而发生收缩,在活性炭和陶土之间形成空隙,有利于形成孔隙结构发达的炭陶复合吸附材料。在温度500℃、保温时间1 h的较佳工艺条件下,制得炭陶复合吸附材料的比表面积为809.5 m2/g,总孔容积为0.298 cm3/g,中孔容积为0.185 cm3/g,微孔容积为0.113 cm3/g,炭陶的含炭量为60.7%,碘吸附值为680.5 mg/g,亚甲基蓝吸附值为165.0 mg/g。  相似文献   

10.
采用溶胶-凝胶法制备了双金属氧化物Ti/IrSbOx电极,表征了电极的析氯电位、析氯稳定性、法拉第效率、活性氯产量、工作寿命等电化学性能,利用电催化氧化反应系统研究了该电极对不同水质工业氨氮废水的处理效果。结果表明,Ti/IrSbOx电极在10 mA/cm2的电流密度下的析氯电位为2.04 V vs RHE,20h电解反应后的电极电势仅增大0.48%,在0.05 M NaCl溶液中的法拉第效率为64.33%,在20 mA/cm2的电流密度下活性氯产量达到8.51 mg/h,在20 mA/cm2电流密度下的工作寿命为21.12年。通过电催化氧化反应系统处理低氯子浓度(2 000 mg/L)工业氨氮废水时较市售电极有更高的电流效率,为该电极的工业化应用提供了理论依据和实践经验。  相似文献   

11.
为提高水性环氧树脂的机械及防腐性能,首先制备有机金属框架材料,得到三种不同的有机金属框架材料,然后按照不同比例与水性环氧树脂混合均匀得到复合乳液,将其固化为涂层和薄膜。通过扫描电子显微镜、热重分析仪、电化学工作站等对有机金属框架材料和复合薄膜、涂层进行表征。结果表明,加入有机金属框架材料后,水性环氧树脂薄膜性能有所增强。其中加入质量分数为0.3%的ZIF-8/EP复合材料时性能较好,薄膜的拉伸强度为14.68 MPa,与水的接触角为64.4°,阻抗为1.045×109Ω/cm2,相比于纯环氧树脂,其阻抗提升了8.383×108Ω/cm2,薄膜的拉伸强度提升了399.3%,水接触角增加了25.9°。  相似文献   

12.
Q345钢材耐蚀性较差,在其表面电镀致密的Al2O3-Ni镀层可有效提高其耐蚀性,研究了电镀的电流密度对Q345钢镀层试样的耐蚀性影响。结果表明:电镀制备的Al2O3掺杂的Ni镀层可显著提高Q345钢的耐蚀性,电镀的电流密度最优值为2.5 A/dm2。基体的腐蚀电流密度为1.845×10-5 A/cm2。制备Al2O3-Ni镀层后,试样的腐蚀电流密度均显著下降。电流密度在2.5 A/dm2时,Al2O3-Ni复合镀层试样的腐蚀电流密度最小,为9.747×10-8 A/cm2。在盐雾腐蚀实验中,基体腐蚀速率最快,为12.081 g/cm2·h;电流密度为2.5 A/dm2时,Al2O3-Ni复合镀层...  相似文献   

13.
以Mn3O4和MnO2为原料,采用高温固相内氧法制备LiMn2O4电池正极材料。通过对LiMn2O4的振实密度、粒度分布、比容量、循环性能、结构及形态等各项理化性能进行检测分析,结果表明:在烧结温度为750℃,Mn3O4和MnO2的摩尔比为3∶1的条件下,所制备的锰酸锂电化学性能最佳,其振实密度为1.84 g/cm3,比表面积为0.698 cm2/g, D50粒径为16.567μm, 1C放电容量为122.65 mAh/g, 50次循环容量保持率为94.02%。  相似文献   

14.
柔性锌离子电容器(FZCs)具有高能量密度、低成本、高效安全以及高柔性等优点,在柔性可穿戴电子储能领域有很高的应用价值和发展前景。但现有的FZCs柔性电极难以兼备高能量密度和良好的力学稳定性,其中,缺少合适的柔性正极材料是限制其电化学性能提高的关键。本工作针对FZCs电容器正极材料存在的缺陷,以柔性碳纤维(CF)为基底材料,结合原位生长及电化学沉积方法,制备了具有三维纳米阵列结构的CF/硼碳氮纳米管/聚苯胺(CF/BCNNTs/PANI)柔性电极,并研究其作为FZCs正极的电化学性能。结果表明:在电流密度为0.5mA/cm2时,能够提供较高的比电容291mF/cm2、能量密度90.94μWh/cm2和功率密度375μW/cm2,且500次充放电循环后容量保持率为80.85%,具备优秀的循环稳定性。  相似文献   

15.
以聚醚砜(PES)为原料,采用氯磺酸(CSA)为磺化剂,通过控制反应温度和时间制备系列磺化聚砜(SPES),并以SPES为基质,二维黑磷(BP)为功能填料,采用溶液铸膜法制备了复合质子交换膜。采用红外光谱分析仪(FTIR)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等对材料结构进行表征,研究了复合膜的吸水率、质子交换性、阻醇性等。结果表明,SPES的磺化度随反应温度、时间、磺化剂浓度的升高而增大。BP的添加增强了复合膜的热稳定性、氧化稳定性、质子交换性、阻醇性等综合性能。在相同测试条件下SPES基膜的甲醇渗透率为1.185×10-6 cm2/s,而5%(质量分数,下同)SPES/BP复合膜的甲醇渗透率仅为2.88×10-7 cm2/s。  相似文献   

16.
为了提高固体氧化物燃料电池在中温条件下的电性能,探索了一种双金属阳极的阴极支撑单电池。单电池以La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)为阴极支撑体,旋涂了甘氨酸-硝酸盐法制备的La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质及Sm0.2Ce0.8O1.9(SDC)缓冲层,涂覆了由硬模板法和浸渍法结合制备的Ni-Fe/GDC双金属阳极。对制备材料进行了XRD和微观形貌分析,单电池电化学测试在800 ℃和750 ℃下,以氢气为燃料的最大功率密度达0.73 W/cm2和0.64 W/cm2,以甲烷为燃料时达0.41 W/cm2和0.40 W/cm2。测试后的SEM表明,阳极具有多孔的微观结构,金属颗粒均匀包覆蠕虫状GDC,保证了单电池具有较高的发电性能。  相似文献   

17.
通过玉米苞叶改性壳聚糖制备了复合吸附剂,并对Cu2+进行了吸附。研究吸附剂用量、吸附温度、吸附时间对Cu2+吸附性能的影响,并通过红外光谱进行了结构表征。结果表明,复合吸附剂的比表面积为94.13 m2/g,平均孔隙大小为4.46 nm,较改性前有较大幅度的提高。最佳吸附条件为:吸附剂用量1.0 g、吸附温度50℃、吸附时间60 min, Cu2+去除率达97%以上;改性壳聚糖与壳聚糖相比,Cu2+去除率大大提高,表明利用玉米苞叶改性壳聚糖制备的复合吸附剂具有较好的吸附性能。  相似文献   

18.
利用改性后的蛭石作为填充材料,通过熔融共混法制备了高密度聚乙烯(HDPE)/改性蛭石复合材料。研究了改性蛭石的添加量对复合材料热稳定性能、结晶性能、力学性能和氧气阻隔性能的影响。结果表明,相比纯HDPE,HDPE/改性蛭石复合材料仍能保持较好的拉伸强度,当含量为1%时拉伸强度为24.1 MPa,断裂伸长率先提高后下降,当含量为0.5%时断裂伸长率达到最高为535%;改性蛭石的加入提升了材料的韧性,当改性蛭石含量为1%时材料缺口冲击强度达到最高为45.8 kJ/m2;HDPE/改性蛭石复合材料的氧气阻隔性能明显提升,当改性蛭石含量为1%时材料的氧气阻隔性能达到最优,氧气渗透系数为6.9×10-15 cm3·cm/(cm2·s·Pa)。  相似文献   

19.
干法制备高中孔率生物质成型活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
以锯末为原料,氯化锌为活化剂,不添加黏结剂,采用干法混合后直接成型活化制备高中孔率生物质成型活性炭。为考察这种工艺的可行性,通过单因素实验,以亚甲基蓝吸附值为评价指标,考察了盐料比、活化温度、活化时间与成型密度对生物质成型活性炭吸附性能的影响,得出较优工艺条件为:盐料比1.0:1,活化温度950℃,活化时间为60min,成型密度为1.4g·cm-3。在此工艺条件下制备得到的生物质成型活性炭,其亚甲基蓝吸附值为387mg·g-1,BET比表面积为2104m2·g-1,平均孔径为3.11nm,总孔容为1.63cm3·g-1,中孔孔容为1.17cm3·g-1,中孔率高达71.8%,初步证明了干法制备高中孔率生物质成型活性炭工艺的可行性。  相似文献   

20.
以稻壳为原料制备生物炭(稻壳炭),利用不同浓度的乙酸锌对稻壳炭改性,制得产物分别命名为稻壳生物炭(RHC)和改性稻壳生物炭(MRHC)。通过SEM、BET、XRD对制备的生物炭理化特性进行表征。将RHC和MRHC制成电极,测试其电化学性能。结果表明,MRHC孔隙结构丰富,比表面积较大,且锌以颗粒状氧化物形式存在于生物炭表面。与RHC相比,MRHC电极比电容大大提高,电阻显著减小,循环性能和倍率性能均有提升。MRHC-0.3(乙酸锌浓度为0.3 mol/L时的MRHC)比表面积为495 m2/g,孔容为0.214 cm3/g,该电极在2 A/g下充放电2000次后,其比电容保持率为92.16%。电极在0.9 V、p H为5、Cu2+初始质量浓度为100 mg/L条件下,MRHC-0.3对Cu2+的电吸附效果最好,吸附量为9.57 mg/g。在0.9 V、pH为5、200 mL Cu2+初始质量浓度为50 mg/L的条件下,去除率可达63.82%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号