首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Alzheimer’s disease (AD) is a neurodegenerative disease causing progressive cognitive decline until eventual death. AD affects millions of individuals worldwide in the absence of effective treatment options, and its clinical causes are still uncertain. The onset of dementia symptoms indicates severe neurodegeneration has already taken place. Therefore, AD diagnosis at an early stage is essential as it results in more effective therapy to slow its progression. The current clinical diagnosis of AD relies on mental examinations and brain imaging to determine whether patients meet diagnostic criteria, and biomedical research focuses on finding associated biomarkers by using neuroimaging techniques. Multiple clinical brain imaging modalities emerged as potential techniques to study AD, showing a range of capacity in their preciseness to identify the disease. This review presents the advantages and limitations of brain imaging modalities for AD diagnosis and discusses their clinical value.  相似文献   

2.
Photoacoustic imaging (PAI) and thermoacoustic imaging (TAI) are two emerging biomedical imaging techniques that both utilize ultrasonic signals as an information carrier. Unique advantages of PAI and TAI are their abilities to provide high resolution functional information such as hemoglobin and blood oxygenation and tissue dielectric properties relevant to physiology and pathology. These two methods, however, may have a limited detection depth and lack of endogenous contrast. An exogenous contrast agent is often needed to effectively resolve these problems. Such agents are able to greatly enhance the imaging contrast and potentially break through the imaging depth limit. Furthermore, a receptor-targeted contrast agent could trace the molecular and cellular biological processes in tissues. Thus, photoacoustic and thermoacoustic molecular imaging can be outstanding tools for early diagnosis, precise lesion localization, and molecular typing of various diseases. The agents also could be used for therapy in conjugation with drugs or in photothermal therapy, where it functions as an enhancer for the integration of diagnosis and therapy. In this article, we present a detailed review about various exogenous contrast agents for photoacoustic and thermoacoustic molecular imaging. In addition, challenges and future directions of photoacoustic and thermoacoustic molecular imaging in the field of translational medicine are also discussed.  相似文献   

3.
Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a “theranostic approach” that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe−/− mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.  相似文献   

4.
Therapy and diagnosis are two major categories in the clinical treatment of disease. Recently, the word "theranosis" has been created, combining the words to describe the implementation of these two distinct pursuits simultaneously. For successful theranosis, the efficient delivery of imaging agents and drugs is critical to provide sufficient imaging signal or drug concentration in the targeted disease site. To achieve this purpose, biomedical researchers have developed various nanoparticles composed of organic or inorganic materials. However, the targeted delivery of these nanoparticles in animal models and patients remains a difficult hurdle for many researchers, even if they show useful properties in cell culture condition. In this Account, we review our strategies for developing theranostic nanoparticles to accomplish in vivo targeted delivery of imaging agents and drugs. By applying these rational strategies, we achieved fine multimodal imaging and successful therapy. Our first strategy involves physicochemical optimization of nanoparticles for long circulation and an enhanced permeation and retention (EPR) effect. We accomplished this result by testing various materials in mouse models and optimizing the physical properties of the materials with imaging techniques. Through these experiments, we developed a glycol chitosan nanoparticle (CNP), which is suitable for angiogenic diseases, such as cancers, even without an additional targeting moiety. The in vivo mechanism of this particle was examined through rationally designed experiments. In addition, we evaluated and compared the biodistribution and target-site accumulation of bare and drug-loaded nanoparticles. We then focus on the targeting moieties that bind to cell surface receptors. Small peptides were selected as targeting moieties because of their stability, low cost, size, and activity per unit mass. Through phage display screening, the interleukin-4 receptor binding peptide was discovered, and we combined it with our nanoparticles. This product accumulated efficiently in atherosclerotic regions or tumors during both imaging and therapy. We also developed hyaluronic acid nanoparticles that can bind efficiently to the CD44 antigen receptors abundant in many tumor cells. Their delivery mechanism is based on both physicochemical optimization for the EPR effect and receptor-mediated endocytosis by their hyaluronic acid backbone. Finally, we introduce the stimuli-responsive system related to the chemical and biological changes in the target disease site. Considering the relatively low pH in tumors and ischemic sites, we applied pH-sensitive micelle to optical imaging, magnetic resonance imaging, anticancer drug delivery, and photodynamic therapy. In addition, we successfully evaluated the in vivo imaging of enzyme activity at the target site with an enzyme-specific peptide sequence and CNPs. On the basis of these strategies, we were able to develop self-assembled nanoparticles for in vivo targeted delivery, and successful results were obtained with them in animal models for both imaging and therapy. We anticipate that these rational strategies, as well as our nanoparticles, will be applied in both the diagnosis and therapy of many human diseases. These theranostic nanoparticles are expected to greatly contribute to optimized therapy for individual patients as personalized medicine, in the near future.  相似文献   

5.
The targeting of facilitative sugar transporters (GLUTs) has been utilized in the development of tools for diagnostics and therapy. The interest in this area is promoted by the phenomenon of alterations in cellular metabolic processes that are linked to multitudes of metabolic disorders and diseases. However, nonspecific targeting (e.g., glucose-transporting GLUTs) leads to a lack of disease detection efficiency. Among GLUTs, GLUT5 stands out as a prominent target for developing specific molecular tools due to its association with metabolic diseases, including cancer. This work reports a non-radiolabeled fluoride (19F) coumarin-based glycoconjugate of 2,5-anhydro-D-mannitol as a potential PET imaging probe that targets the GLUT5 transporter. Inherent fluorescent properties of the coumarin fluorophore allowed us to establish the probe’s uptake efficiency and GLUT5-specificity in a GLUT5-positive breast cell line using fluorescence detection techniques. The click chemistry approach employed in the design of the probe enables late-stage functionalization, an essential requirement for obtaining the radiolabeled analog of the probe for future in vivo cancer imaging applications. The high affinity of the probe to GLUT5 allowed for the effective uptake in nutrition-rich media.  相似文献   

6.
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.  相似文献   

7.
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.  相似文献   

8.
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.  相似文献   

9.
Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed.  相似文献   

10.
Enormous efforts have been made toward the translation of nanotechnology into medical practice, including cancer management. Generally the applications have fallen into two categories: diagnosis and therapy. Because the targets are often the same, the development of separate approaches can miss opportunities to improve efficiency and effectiveness. The unique physical properties of nanomaterials enable them to serve as the basis for superior imaging probes to locate and report cancerous lesions and as vehicles to deliver therapeutics preferentially to those lesions. These technologies for probes and vehicles have converged in the current efforts to develop nanotheranostics, nanoplatforms with both imaging and therapeutic functionalities. These new multimodal platforms are highly versatile and valuable components of the emerging trend toward personalized medicine, which emphasizes tailoring treatments to the biology of individual patients to optimize outcomes. The close coupling of imaging and treatment within a theranostic agent and the data about the evolving course of an illness that these agents provide can facilitate informed decisions about modifications to treatment. Magnetic nanoparticles, especially superparamagnetic iron oxide nanoparticles (IONPs), have long been studied as contrast agents for magnetic resonance imaging (MRI). Owing to recent progress in synthesis and surface modification, many new avenues have opened for this class of biomaterials. Such nanoparticles are not merely tiny magnetic crystals, but potential platforms with large surface-to-volume ratios. By taking advantage of the well-developed surface chemistry of these materials, researchers can load a wide range of functionalities, such as targeting, imaging and therapeutic features, onto their surfaces. This versatility makes magnetic nanoparticles excellent scaffolds for the construction of theranostic agents, and many efforts have been launched toward this goal. In this Account, we introduce the surface engineering techniques that we and others have developed, with an emphasis on how these techniques affect the role of nanoparticles as imaging or therapeutic agents. We and others have developed a set of chemical methods to prepare magnetic nanoparticles that possess accurate sizes, shapes, compositions, magnetizations, relaxivities, and surface charges. These features, in turn, can be harnessed to adjust the toxicity and stability of the nanoparticles and, further, to load functionalities, via various mechanisms, onto the nanoparticle surfaces.  相似文献   

11.
Magnetic nanospheres have numerous applications in biomedicine, biotechnology and wastewater treatment, due to their high surface area, tunable sphere size and superparamagnetic properties. Magnetic nanoparticles can be designed and endowed with optical, electronic and fluorescent properties, allowing a wide range of functionality. Multifunctional magnetic particles with heterodimer structures allow various kinds of target molecules to be attached onto their specific parts via affinity or coordinate bonding, etc. The abilities of these nanodevices, including the encapsulation of target molecules in magnetic hybrid nanostructures and easy magnetic separation in the presence of external magnetic fields, show much promise for magnetic imaging, magnetic separation and drug delivery. Consequently, magnetic particles offer excellent potential future uses in disease diagnosis, hyperthermia, immunoassays, electrochemical biosensors, contaminated water treatment and optical detection. In this article, we review the preparation and application of inorganic and organic magnetic composite spheres in the fields of magnetic separation, drug delivery, hyperthermia, magnetic resonance imaging, and others. The size, specific surface area, structure, magnetic properties and surface functional groups of nanospheres have a great influence on their effectiveness in these applications. The encapsulation of target molecules in magnetic hybrid nanostructures and their easy separation using an external magnetic field show promise for the fabrication of novel nanodevices for many applications. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia–reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.  相似文献   

13.
Atherosclerosis (AS) is a vascular disease caused by chronic inflammation and lipids that is the main cause of myocardial infarction, stroke and other cardiovascular diseases. Atherosclerosis is often difficult to detect in its early stages due to the absence of clinically significant vascular stenosis. This is not conducive to early intervention or treatment of the disease. Over the past decade, researchers have developed various imaging methods for the detection and imaging of atherosclerosis. At the same time, more and more biomarkers are being found that can be used as targets for detecting atherosclerosis. Therefore, the development of a variety of imaging methods and a variety of targeted imaging probes is an important project to achieve early assessment and treatment of atherosclerosis. This paper provides a comprehensive review of the optical probes used to detect and target atherosclerosis imaging in recent years, and describes the current challenges and future development directions.  相似文献   

14.
In recent decades, as a subclass of biomaterials, biologically sensitive nanoparticles have attracted increased scientific interest. Many of the demands for physiologically responsive nanomaterials in applications involving the human body cannot be met by conventional technologies. Due to the field’s importance, considerable effort has been expended, and biologically responsive nanomaterials have achieved remarkable success thus far. This review summarizes the recent advancements in biologically responsive nanomaterials and their applications in biosensing and molecular imaging. The nanomaterials change their structure or increase the chemical reaction ratio in response to specific bio-relevant stimuli (such as pH, redox potentials, enzyme kinds, and concentrations) in order to improve the signal for biologically responsive diagnosis. We use various case studies to illustrate the existing issues and provide a clear sense of direction in this area. Furthermore, the limitations and prospects of these nanomaterials for diagnosis are also discussed.  相似文献   

15.
Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been increasingly recognized for their potential uses for medical diagnosis and treatment. However, there have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this study was to develop imaging methods and pharmacokinetic models to aid the future development of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver, and brain were assessed by serial in vivo NIR imaging. These studies were performed under “basal” circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods lays a foundation for future PK studies of candidate brain MRI molecular contrast agents.  相似文献   

16.
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.  相似文献   

17.
In recent decades, nanotechnology has attracted major interests in view of drug delivery systems and therapies against diseases, such as cancer, neurodegenerative diseases, and many others. Nanotechnology provides the opportunity for nanoscale particles or molecules (so called “Nanomedicine”) to be delivered to the targeted sites, thereby, reducing toxicity (or side effects) and improving drug bioavailability. Nowadays, a great deal of nano-structured particles/vehicles has been discovered, including polymeric nanoparticles, lipid-based nanoparticles, and mesoporous silica nanoparticles. Nanomedical utilizations have already been well developed in many different aspects, including disease treatment, diagnostic, medical devices designing, and visualization (i.e., cell trafficking). However, while quite a few successful progressions on chemotherapy using nanotechnology have been developed, the implementations of nanoparticles on stem cell research are still sparsely populated. Stem cell applications and therapies are being considered to offer an outstanding potential in the treatment for numbers of maladies. Human induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem cell-like state. Although the exact mechanisms underlying are still unclear, iPSCs are already being considered as useful tools for drug development/screening and modeling of diseases. Recently, personalized medicines have drawn great attentions in biological and pharmaceutical studies. Generally speaking, personalized medicine is a therapeutic model that offers a customized healthcare/cure being tailored to a specific patient based on his own genetic information. Consequently, the combination of nanomedicine and iPSCs could actually be the potent arms for remedies in transplantation medicine and personalized medicine. This review will focus on current use of nanoparticles on therapeutical applications, nanomedicine-based neuroprotective manipulations in patient specific-iPSCs and personalized medicine.  相似文献   

18.
Many diseases can overrule natural pH regulatory mechanisms and alter the extracellular pH (pHe). A non-invasive method that resolves pHe in vivo with high spatial and temporal resolution could therefore improve diagnosis and monitoring of diseases, contributing to the concept of precision medicine. During the last decades, several techniques have been proposed to image pHe non-invasively. The majority of these methods rely on magnetic resonance because of its good spatial resolution, high penetration depth, non-ionizing radiation and excellent complimentary soft tissue contrast. Dissolution dynamic nuclear polarization (DNP) is an emerging concept to enhance nuclear magnetic resonance (NMR) signals by more than four orders of magnitude, making it possible to observe in vivo metabolic processes in real-time. Here, we summarize and review recent developments in pHe imaging techniques based on hyperpolarization methods and give an overview of recently discovered hyperpolarized pH sensor molecules that have been applied in vitro and in vivo.  相似文献   

19.
Two key concerns exist in contemporary cancer chemotherapy in clinics: limited therapeutic efficiency and substantial side effects in patients. In recent years, researchers have been investigating revolutionary cancer treatment techniques and photo-thermal therapy (PTT) has been proposed by many scholars. A drug for photothermal cancer treatment was synthesized using the hydrothermal method, which has a high light-to-heat conversion efficiency. It may also be utilized as a clear multi-modality bioimaging platform for photoacoustic imaging (PAI), computed tomography (CT), and magnetic resonance imaging (MRI). When compared to single-modality imaging, multi-modality imaging delivers far more thorough and precise details for cancer diagnosis. Furthermore, gold-doped upconverting nanoparticles (UCNPs) have an exceptionally high target recognition for tumor cells. The gold-doped UCNPs, in particular, are non-toxic to normal tissues, endowing the as-prepared medications with outstanding therapeutic efficacy but exceptionally low side effects. These findings may encourage the creation of fresh effective imaging-guided approaches to meet the goal of photothermal cancer therapy.  相似文献   

20.
付绒  杨春林  胡燕燕  欧梅桂 《化工进展》2019,38(8):3742-3755
核壳型磁性荧光纳米复合材料是材料领域的研究热点之一,该材料呈现了单一材料无法同时兼有的磁响应性及荧光特性,因此被广泛地应用于生物医疗领域,提高了疾病诊断的效率和准确率,改进了癌症治疗技术。本文简单介绍了具有核壳结构的磁性荧光纳米复合粒子的4种形成机理、一些比较常用的制备方法及其各自的优缺点;重点介绍了纳米复合粒子的表面修饰方法,主要包括表面钝化及表面功能化两大类;对核壳结构磁性荧光纳米复合材料在多模态分子影像、药物的靶向运输与可控释放、癌症的热疗法及光动力疗法等方面的应用作了阐述。最后展望了核壳型磁性荧光纳米复合材料未来的发展趋势,并针对研究过程中所存在的关键问题,提出了今后进一步研究的主要方向为寻找多功能材料的最佳组合及组装方式、优化整合表面修饰剂的性能和明确材料在体内的毒性及代谢情况等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号