首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tuberculosis is still an important medical and social problem. In recent years, great strides have been made in the fight against M. tuberculosis, especially in the Russian Federation. However, the emergence of a new coronavirus infection (COVID-19) has led to the long-term isolation of the population on the one hand and to the relevance of using personal protective equipment on the other. Our knowledge regarding SARS-CoV-2-induced inflammation and tissue destruction is rapidly expanding, while our understanding of the pathology of human pulmonary tuberculosis gained through more the 100 years of research is still limited. This paper reviews the main molecular and cellular differences and similarities caused by M. tuberculosis and SARS-CoV-2 infections, as well as their critical immunological and pathomorphological features. Immune suppression caused by the SARS-CoV-2 virus may result in certain difficulties in the diagnosis and treatment of tuberculosis. Furthermore, long-term lymphopenia, hyperinflammation, lung tissue injury and imbalance in CD4+ T cell subsets associated with COVID-19 could propagate M. tuberculosis infection and disease progression.  相似文献   

3.
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.  相似文献   

4.
Central nervous system (CNS) tuberculosis is the most lethal and devastating form among the diseases caused by Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis bacilli enter the CNS are still unclear. However, the BBB and the BCSFB have been proposed as possible routes of access into the brain. We previously reported that certain strains of M. tuberculosis possess an enhanced ability to cause secondary CNS infection in a mouse model of progressive pulmonary tuberculosis. Here, we evaluated the morphostructural and molecular integrity of CNS barriers. For this purpose, we analyzed through transmission electron microscopy the ultrastructure of brain parenchymal microvessels and choroid plexus epithelium from animals infected with two mycobacterial strains. Additionally, we determined the expression of junctional proteins and cytokines by immunological techniques. The results showed that the presence of M. tuberculosis induced disruption of the BCSFB but no disruption of the BBB, and that the severity of such damage was related to the strain used, suggesting that variations in the ability to cause CNS disease among distinct strains of bacteria may also be linked to their capacity to cause direct or indirect disruption of these barriers. Understanding the pathophysiological mechanisms involved in CNS tuberculosis may facilitate the establishment of new biomarkers and therapeutic targets.  相似文献   

5.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a successful intracellular pathogen that is responsible for the highest mortality rate among diseases caused by bacterial infections. During early interaction with the host innate cells, M. tuberculosis cell surface antigens interact with Toll like receptor 4 (TLR4) to activate the nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3 (NLRP3) canonical, and non-canonical inflammasome pathways. NLRP3 inflammasome activation in the alveoli has been reported to contribute to the early inflammatory response that is needed for an effective anti-TB response through production of pro-inflammatory cytokines, including those of the Interleukin 1 (IL1) family. However, overstimulation of the alveolar NLRP3 inflammasomes can induce excessive inflammation that is pathological to the host. Several studies have explored the use of medicinal plants and/or their active derivatives to inhibit excessive stimulation of the inflammasomes and its associated factors, thus reducing immunopathological response in the host. This review describes the molecular mechanism of the NLRP3 inflammasome activation in the alveoli during M. tuberculosis infection. Furthermore, the mechanisms of inflammasome inhibition using medicinal plant and their derivatives will also be explored, thus offering a novel perspective on the alternative control strategies of M. tuberculosis-induced immunopathology.  相似文献   

6.
Mycobacterium tuberculosis l,d -transpeptidases (Ldts), which are involved in cell-wall biosynthesis, have emerged as promising targets for the treatment of tuberculosis. However, an efficient method for testing inhibition of these enzymes is not currently available. We present a fluorescence-based assay for LdtMt2, which is suitable for high-throughput screening. Two fluorogenic probes were identified that release a fluorophore upon reaction with LdtMt2, thus making it possible to assess the availability of the catalytic site in the presence of inhibitors. The assay was applied to a panel of β-lactam antibiotics and related inhibitors; the results validate observations that the (carba)penem subclass of β-lactams are more potent Ldt inhibitors than other β-lactam classes, though unexpected variations in potency were observed. The method will enable systematic structure–activity relationship studies on Ldts, thereby facilitating the identification of new antibiotics active against M. tuberculosis.  相似文献   

7.
The field of immunometabolism seeks to decipher the complex interplay between the immune system and the associated metabolic pathways. The role of small molecules that can target specific metabolic pathways and subsequently alter the immune landscape provides a desirable platform for new therapeutic interventions. Immunotherapeutic targeting of suppressive cell populations, such as myeloid-derived suppressor cells (MDSC), by small molecules has shown promise in pathologies such as cancer and support testing of similar host-directed therapeutic approaches in MDSC-inducing conditions such as tuberculosis (TB). MDSC exhibit a remarkable ability to suppress T-cell responses in those with TB disease. In tumors, MDSC exhibit considerable plasticity and can undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) to facilitate their immunosuppressive functions. In this review we look at the role of MDSC during M. tb infection and how their metabolic reprogramming aids in the exacerbation of active disease and highlight the possible MDSC-targeted metabolic pathways utilized during M. tb infection, suggesting ways to manipulate these cells in search of novel insights for anti-TB therapies.  相似文献   

8.
Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3′ UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2.  相似文献   

9.
Mycobacterium tuberculosis salicylate synthase (MbtI), a member of the chorismate‐utilizing enzyme family, catalyses the first committed step in the biosynthesis of the siderophore mycobactin T. This complex secondary metabolite is essential for both virulence and survival of M. tuberculosis, the etiological agent of tuberculosis (TB). It is therefore anticipated that inhibitors of this enzyme may serve as TB therapies with a novel mode of action. Herein we describe the first inhibition study of M. tuberculosis MbtI using a library of functionalized benzoate‐based inhibitors designed to mimic the substrate (chorismate) and intermediate (isochorismate) of the MbtI‐catalyzed reaction. The most potent inhibitors prepared were those designed to mimic the enzyme intermediate, isochorismate. These compounds, based on a 2,3‐dihydroxybenzoate scaffold, proved to be low‐micromolar inhibitors of MbtI. The most potent inhibitors in this series possessed hydrophobic enol ether side chains at C3 in place of the enol‐pyruvyl side chain found in chorismate and isochorismate.  相似文献   

10.
Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-β-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.  相似文献   

11.
Background: Pulmonary disease caused by Mycobacterium abscessus (M. abscessus) spreads around the world, and this disease is extremely difficult to treat due to intrinsic and acquired resistance of the pathogen to many approved antibiotics. M. abscessus is regarded as one of the most drug-resistant mycobacteria, with very limited therapeutic options. Methods: Whole-cell growth inhibition assays was performed to screen and identify novel inhibitors. The IC50 of the target compounds were tested against THP-1 cells was determined to calculate the selectivity index, and then time–kill kinetics assay was performed against M. abscessus. Subsequently, the synergy of oritavancin with other antibiotics was evaluated by using checkerboard method. Finally, in vivo efficacy was determined in an immunosuppressive murine model simulating M. abscessus infection. Results: We have identified oritavancin as a potential agent against M. abscessus. Oritavancin exhibited time-concentration dependent bactericidal activity against M. abscessus and it also displayed synergy with clarithromycin, tigecycline, cefoxitin, moxifloxacin, and meropenem in vitro. Additionally, oritavancin had bactericidal effect on intracellular M. abscessus. Oritavancin significantly reduced bacterial load in lung when it was used alone or in combination with cefoxitin and meropenem. Conclusions: Our in vitro and in vivo assay results indicated that oritavancin may be a viable treatment option against M. abscessus infection.  相似文献   

12.
Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal β-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11β, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.  相似文献   

13.
14.
15.
Latent tuberculosis infection (LTBI) represents a major challenge to curing TB disease. Current guidelines for LTBI management include only three older drugs and their combinations—isoniazid and rifamycins (rifampicin and rifapentine). These available control strategies have little impact on latent TB elimination, and new specific therapeutics are urgently needed. In the present mini-review, we highlight some of the alternatives that may potentially be included in LTBI treatment recommendations and a list of early-stage prospective small molecules that act on drug targets specific for Mycobacterium tuberculosis latency.  相似文献   

16.
Tuberculosis (TB) remains a pressing unmet medical need, particularly with the emergence of multidrug‐resistant and extensively drug‐resistant tuberculosis. Here, a series of 1,4‐substituted‐1,2,3‐triazoles have been synthesized and evaluated as potential antitubercular agents. These compounds were assembled via click chemistry in high crude purity and in moderate to high yield. Of the compounds tested, 12 compounds showed promising antitubercular activity with six possessing minimum inhibitory concentration (MIC) values <10 μg mL?1, and total selectivity for Mycobacterium tuberculosis (Mtb) growth inhibition. A second set of 21 compounds bearing variations on ring C were synthesized and evaluated. This second library gave an additional six compounds displaying MIC values ≤10 μg mL?1 and total selectivity for Mtb growth inhibition. These compounds serve as an excellent starting point for further development of antitubercular therapies.  相似文献   

17.
Copper is required for aerobic respiration by Mycobacterium tuberculosis and its human host, but this essential element is toxic in abundance. Copper nutritional immunity refers to host processes that modulate levels of free copper to alternately starve and intoxicate invading microbes. Bacteria engulfed by macrophages are initially contained within copper-limited phagosomes, which fuse with ATP7A vesicles that pump in toxic levels of copper. In this report, we examine how CtpB, a P-type ATPase in M. tuberculosis, aids in response to nutritional immunity. In vitro, the induced expression of ctpB in copper-replete medium inhibited mycobacterial growth, while deletion of the gene impaired growth only in copper-starved medium and within copper-limited host cells, suggesting a role for CtpB in copper acquisition or export to the copper-dependent respiration supercomplex. Unexpectedly, the absence of ctpB resulted in hypervirulence in the DBA/2 mouse infection model. As ctpB null strains exhibit diminished growth only in copper-starved conditions, reduced copper transport may have enabled the mutant to acquire a “Goldilocks” amount of the metal during transit through copper-intoxicating environments within this model system. This work reveals CtpB as a component of the M. tuberculosis toolkit to counter host nutritional immunity and underscores the importance of elucidating copper-uptake mechanisms in pathogenic mycobacteria.  相似文献   

18.
The enzyme Zmp1 is a zinc‐containing peptidase that plays a critical role in the pathogenicity of Mycobacterium tuberculosis. Herein we describe the identification of a small set of Zmp1 inhibitors based on a novel 8‐hydroxyquinoline‐2‐hydroxamate scaffold. Among the synthesized compounds, N‐(benzyloxy)‐8‐hydroxyquinoline‐2‐carboxamide ( 1 c ) was found to be the most potent Zmp1 inhibitor known to date, and its binding mode was analyzed both by kinetics studies and molecular modeling, identifying critical interactions of 1 c with the zinc ion and residues in the active site. The effect of 1 c on intracellular Mycobacterium survival was assayed in J774 murine macrophages infected with M. tuberculosis H37Rv or M. bovis BCG and human monocyte‐derived macrophages infected with M. tuberculosis H37Rv. Cytotoxicity and genotoxicity were also assessed. Overall, inhibitor 1 c displays interesting in vitro antitubercular properties worthy of further investigation.  相似文献   

19.
The PD-1/PD-L1 pathway is critical in T cell biology; however, the role of the PD-1/PD-L1 pathway in clinical characteristics and treatment outcomes in pulmonary tuberculosis (PTB) patients is unclear. We prospectively enrolled PTB, latent TB infection (LTBI), and non-TB, non-LTBI subjects. The expression of PD-1/PD-L1 on peripheral blood mononuclear cells (PBMCs) was measured and correlated with clinical characteristics and treatment outcomes in PTB patients. Immunohistochemistry and immunofluorescence were used to visualize PD-1/PD-L1-expressing cells in lung tissues from PTB patients and from murine with heat-killed MTB (HK-MTB) treatment. A total of 76 PTB, 40 LTBI, and 28 non-TB, non-LTBI subjects were enrolled. The expression of PD-1 on CD4+ T cells and PD-L1 on CD14+ monocytes was significantly higher in PTB cases than non-TB subjects. PTB patients with sputum smear/culture unconversion displayed higher PD-L1 expression on monocytes. PD-L1-expressing macrophages were identified in lung tissue from PTB patients, and co-localized with macrophages in murine lung tissues. Mycobacterium tuberculosis (MTB) whole cell lysate/EsxA stimulation of human and mouse macrophages demonstrated increased PD-L1 expression. In conclusion, increased expression of PD-L1 on monocytes in PTB patients correlated with higher bacterial burden and worse treatment outcomes. The findings suggest the involvement of the PD-1/PD-L1 pathway in MTB-related immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号