首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于数据驱动的深度学习技术成为新一代智能电网的应用趋势,该技术对电网中有标注训练数据的量级提出更高的要求。为了获取更多有标注的智能电网样本数据,文章提出了一种基于改进的生成对抗网络(generative adversarial network,GAN)的训练样本生成算法。该方法通过交替训练改进GAN的生成模型与判别模型,无需先验知识的指导,自主学习原始样本的分布规律,生成新的数据样本。然后采用人工神经网络作为基础分类器,计算样本分类的准确率,检验生成样本的有效性。实验表明,改进GAN模型可以有效学习样本的分布规律,提升谐波分类的准确率,该方法同时具有良好的抗噪性和泛化性,对深度学习技术在智能电网中的深入发展具有重要意义。  相似文献   

2.
针对在历史负荷数据匮乏场景下,现有空间负荷预测方法预测结果精度较低甚至失效的问题,提出一种基于生成式对抗网络(generativeadversarialnetworks, GAN)和RCGAN的空间负荷预测方法。该方法首先建立电力地理信息系统,并生成I类元胞和Ⅱ类元胞?然后构建基于原始GAN的数据生成模型,根据十分有限的历史负荷数据生成数量充足且兼顾负荷时空分布规律的\"Ⅱ类元胞历史负荷数据\",达到数据增强的目的。其次构建基于RCGAN的空间负荷预测模型。最后利用生成的\"Ⅱ类元胞历史负荷数据\"和确定参数的RCGAN模型实现空间负荷预测。工程实例表明该方法是正确、有效的。  相似文献   

3.
综合能源负荷场景生成是研究能源计量、规划运行等领域问题的基础,具有重要意义。但由于数据采集困难、综合能源负荷多能耦合等因素的限制,综合能源负荷场景的多样化生成仍是一大难题。提出了一种基于生成对抗网络(generative adversarial networks, GAN)的综合能源负荷场景生成方法。首先建立梯度惩罚优化的Wasserstein生成对抗网络模型,解决综合能源负荷的高随机性可能带来的不收敛或模式崩溃问题。其次,基于深度长短期记忆(long short-term memory, LSTM)的循环神经网络构建生成对抗网络的生成器和判别器,使模型更适用于复杂综合能源负荷数据生成。算例结果表明,所提模型的生成负荷场景在概率分布、曲线标志性特征和冷热电负荷之间相关性等方面相较于蒙特卡洛法和原始生成对抗网络均获得了较好结果,可以在不同模式下生成具有多样性且逼真的负荷场景。  相似文献   

4.
为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。  相似文献   

5.
适用于小样本的神经网络光伏预测方法   总被引:1,自引:0,他引:1  
基于神经网络的短期光伏预测方法通常需要大量训练样本,对于新投运的光伏电站,历史运行数据的不足使得常规短期光伏预测方法难以应用。针对该问题,提出一种适用于小样本的双层神经网络单步光伏预测方法。根据光伏发电各环节影响因素的解耦特性,将常规单层神经网络拆分为双层网络,使每层网络具有简化的结构;用单步预测代替多步预测,降低神经网络的输入输出维数;基于统计分析,将天气影响因素有效整合到预测模型中,简化输入输出之间的映射关系。使用实际数据对所提光伏预测模型进行训练和验证,结果表明,所提方法可有效减少对训练样本数量的需求,同时保证预测的准确度。  相似文献   

6.
精准的短期负荷预测对电力系统制定合理生产计划、提高经济效益、保证电网安全运行具有重要意义.为学习非线性负荷数据中隐含的深层关系,提高短期负荷预测精度,文中提出一种基于条件生成对抗网络的短期负荷预测模型.所提模型使用卷积神经网络构建生成模型和判别模型,以负荷影响因素作为条件,并引入特征损失函数作为判别模型部分隐藏层的损失...  相似文献   

7.
为解决电网难以获取NWP数据和无法建立光伏功率预测模型的问题,提出一种自样本特征构造的一维卷积双向长短期记忆神经网络光伏发电功率预测方法.通过K均值聚类和功率骤减事件检测的特征工程获取细粒度的天气状态标签,实现基于自身样本的特征构造,以解决样本特征缺少问题;采用卷积和长短期记忆网络结合的模型结构,解决局部特征提取和长期依赖的问题.算例验证结果表明,所提方法改善整体的预测性能,降低多特征数据存在的数据匮乏和数据稳定性风险,为模型输入特征较少的网侧光伏功率短期预测提供一种有效途径.  相似文献   

8.
针对非晴天天气类型历史数据量匮乏导致光伏功率预测精度低的问题,提出了一种含有梯度惩罚的改进生成对抗网络(Wasserstein generative adversarial network with gradient penalty, WGAN-GP)和CNN-LSTM-Attention光伏功率短期预测模型。首先,利用K-means++聚类算法将历史光伏数据划分为若干天气类型,使用WGAN-GP生成符合各天气类型数据分布规律的高质量新样本,实现训练集数据增强。其次,结合卷积神经网络(convolutional neural network, CNN)在特征提取上的优势和长短期记忆网络(long short-term memory, LSTM)在时间序列预测上的优势,提升预测模型学习光伏功率与气象数据间长期映射关系的能力。此外,引入注意力机制(Attention)弥补输入序列长时LSTM难以保留关键信息的不足。实验结果表明:基于WGAN-GP对各类型天气样本扩充能有效提高预测精度;与3种经典预测模型相比,所提出的CNN-LSTM-Attention模型具有更高的预测精度。  相似文献   

9.
准确的光伏发电预测对于电网的安全稳定运行与资源优化调配具有重要作用.提出了一种基于长短期记忆网络与注意力机制的光伏出力预测模型(ATT-LSTM).首先将光伏功率、光伏组件温度以及环境湿度三个时间序列用作模型输入,接着通过长短期记忆网络进行特征提取,然后通过注意力机制进一步提取关键特征,最后通过Adagrad算法进行对...  相似文献   

10.
针对网络入侵检测领域存在检测准确率低的问题,研究异常流量样本少和分类器性能不佳时的入侵检测模型,提出一种基于改进生成对抗网络和混合时空神经网络的入侵检测模型.改进生成对抗网络通过学习异常流量样本的分布特性,生成具有特定标签的人工异常流量样本;融合卷积神经网络和双向长短时记忆神经网络提取攻击流量的时空融合特征,利用注意力机制对时空融合特征进行加权,构建混合时空神经网络对网络流量进行分类预测.在UNSW-NB15数据集上对所提模型进行仿真实验,准确率和F1分数分别为92.93%和94.81%,表明所提模型能够有效改善原始数据集中的类别不平衡性问题,提高对异常流量样本的检测能力和网络入侵的检测准确率.  相似文献   

11.
典型运行方式是电力系统运行方式编制的重要基础。由于电力系统的高维度、非线性和不确定性,制定运行方式时往往面临组合爆炸难题,运方人员难以根据实际需要生成所需的典型运行方式,例如:使某个待研究断面安全裕度低的运行方式,因而面临生成所需类型样本难度大、生成效率低的问题。为此,该文首次提出结合生成对抗网络与模型迁移的典型运行方式样本生成方法,仅需少量数据和少量微调即可高效地得到具有高性能的典型运行方式生成模型。首先,设计了面向运行方式生成的生成对抗网络模型,通过基础模型充分学习到不同类型的运行方式样本的共性特征;在此基础上,提出适用于生成对抗网络的模型迁移训练方法,使参数微调后得到的目标模型可以有针对性地生成大量所需的典型运行方式样本。所提方法以输电断面安全裕度为研究主题,在新英格兰10机39节点系统上进行了验证,结果表明,所提方法能根据实际需求生成任意指定安全裕度的运行方式样本,有效解决运行方式制定中所需特定类型样本不足的难题,为后续运行方式分析提供坚实的数据支撑。  相似文献   

12.
超短期光伏功率预测对光伏并网系统的安全运行有着重要意义.针对传统单一预测模型在进行光伏功率预测时受到功率随机波动性的影响导致预测精度往往不理想的问题,提出了组合式深度学习预测模型.首先,采用小波包分解对原始光伏功率序列进行分解,初步降低了原始光伏功率的非稳定性.其次,在此基础上分别采用长短时记忆网络、门控循环单元与循环...  相似文献   

13.
近几年新能源技术不断发展,光伏发电因具有绿色清洁、持续长久等优点得到了广泛应用,但同时其输出功率存在间歇性、随机性和突变性等特点,会对电网的稳定性带来负面影响,因此准确的功率预测对电网的稳定运行至关重要。随着人工智能的兴起,将深度学习网络技术与功率预测相结合,可得到高精度的预测结果。为此提出一种基于长短期记忆网络的深度学习方法,建立分时长短期记忆网络模型,从而实现了光伏发电功率的预测。该预测方法的推广应用为电网的稳定运行提供了可靠保证,有效提高了功率预测精度,具有很好的应用前景和现实的应用价值。  相似文献   

14.
针对电力负荷本身固有的不稳定性和非线性,导致短期电力负荷预测精度难以提升问题。本文提出一种基于EMD和LSTM相结合的短期电力负荷预测方法。首先,利用EMD将原始信号分解为一系列本征模态函数和一个残差量。随后,将所有分量输入LSTM中。为进一步提升负荷预测精度和优化模型泛化能力,分别对大分量信号引入改进麻雀搜寻算法优化LSTM超参数和对原始负荷数据引入表格生成对抗网络生成新数据样本,形成基于表格生成对抗网络和EMD-ISSA-LSTM的短期电力负荷预测方法。最后,分别采用第九届电工数学建模竞赛负荷数据和湖南省某地市含分布式电源的负荷数据进行效果验证。结果表明,在两种数据集下,该模型的平均绝对百分比误差分别为2.37%和2.76%,验证了该方法的有效性。  相似文献   

15.
光伏发电功率预测对于电力系统制定发电计划和协同调度至关重要。然而,由于光伏发电过程的随机性和间歇性,光伏功率预测的准确性仍有较大提升空间。为此,提出了一种基于三维卷积神经网络(three-dimensional convolutional neural network,3DCNN)和卷积长短期记忆网络(convolutional long short-term memory network,CLSTM)混合模型的光伏功率预测方法,该方法结合3DCNN和CLSTM两种神经网络模型的优势,提高了预测准确性。采用均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)以及平均绝对百分比误差(mean absolute percentage error,MAPE)三个指标对预测模型进行评价,通过将基于该混合模型的预测方法应用于某光伏电站的出力预测,验证了模型的适用性和正确性。结果表明,当太阳辐照强度、温度、湿度、风速等输入的时间序列相同时,基于3DCNN和CLSTM混合模型的预测效果最好,相比于单独的3DCNN模型、CLSTM模型、BP神经网络模型,混合模型的MAPE分别提高了54%、61%和64%。说明该混合模型能够更好地适应光伏发电的随机性和间歇性特点,并提高功率预测的准确性。  相似文献   

16.
廖一帆  武志刚 《电网技术》2021,45(9):3722-3728
静态电压稳定临界点在研究极限状态电力系统的传统分析方法与数据驱动方法中都有重要意义.电网新形势下,多次调用逐点法获取极限数据不再现实.提出一种基于深度学习的生成模型,用于静态电压稳定临界样本生成.首先,注意到临界样本是一种特殊的潮流样本,以非联络节点的电压作为样本的特征参量,可以解决样本的潮流不收敛与联络节点注入功率非...  相似文献   

17.
樊磊  张倩  李国丽  伍骏杰 《现代电力》2023,126(6):899-905
光伏发电功率的预测对电网稳定以及安全地运行有重要意义,提出一种基于长短期记忆网络(long short term memory ,LSTM)数字孪生体的预测模型,通过数字孪生体模型实现光伏发电功率的精准预测。数字孪生体分为物理空间与数据空间,首先根据物理空间得到的气象孪生数据由LSTM算法获取初步的预测功率,同时更新历史气象数据库。然后在气象数据库中找到相似日,对比相似日的预测功率和实际功率,对初步的预测功率进行误差修正,得到最终光伏功率预测值。文中所提的数字孪生体实现了物理实体与数据驱动的连接,同时物理实体可进行自我学习和更新,因此相较于传统的光伏预测结果更为精确,通过仿真算例进一步证实数字孪生体预测的准确性。  相似文献   

18.
电力系统面临多源、多维数据挑战。深度学习相较传统方法更适用于处理电力数据,具有强大的降维、非线性拟合和特征提取能力。生成对抗网络(Generative Adversarial Network,GAN)通过对抗性训练提升生成器和判别器性能,能有效预测短期日负荷、配电网负荷和电动汽车负荷。首先介绍了GAN的基本概念,分析了其优缺点;然后介绍了广泛应用于短期负荷预测的四类GAN衍生模型,并对GAN在短期负荷预测中的应用现状进行了细致的概述;最后展望了未来的应用前景。  相似文献   

19.
为了充分利用电网自身的海量历史数据进行光伏功率预测,提出一种宽度&深度(Wide&Deep)框架下融合极限梯度提升(XGBoost)算法和长短时记忆网络(LSTM)的Wide&Deep-XGB2LSTM超短期光伏功率预测模型.对历史数据进行特征提取,获得时间、辐照度、温度等原始特征,在此基础上进行特征重构,通过交叉组合...  相似文献   

20.
随着国家对可再生能源占比要求的不断提高,新光伏电站的建设需求随之增加.为解决新建光伏电站历史数据不足问题,建立基于特征迁移学习的光伏功率短期预测模型.模型采用日辐照度特征、光伏电池温度和t-SNE算法对气象数据进行特征提取,构建具有泛化能力的高识别度预测模型特征.根据迁移学习理论,将长期运行的光伏电站历史数据用于GRU...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号