首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用选区激光熔化(SLM)技术制备了12CrNi2合金钢. 借助金相显微镜、扫描电子显微镜、透射电子显微镜、显微硬度仪、室温拉伸试验等方法研究了激光能量密度对合金钢显微组织和力学性能的影响. 结果表明,成形合金钢的宏观组织可分为熔池区与热影响区两部分,微观组织为回火马氏体和少量残余奥氏体. 随激光能量密度(EV)增加,成形合金钢的孔洞缺陷逐渐减少,致密度逐渐增加,最高可达到99.87%;同时,熔池体积增大,寿命增加,冷却速度降低,导致回火马氏体板条宽化,热影响区变宽,合金钢的显微硬度和强度降低,塑性增加. 在EV为81.34 J/mm3条件下,SLM成形12CrNi2合金钢具有最优强塑性,抗拉强度和屈服强度分别为1098和882 MPa,断后伸长率为20.07%. 采用SLM技术成形12CrNi2合金钢可获得比激光熔化沉积(LMD)和铸造成形更佳的综合力学性能.  相似文献   

2.
通过选区激光熔化(SLM)工艺成型AlSi10Mg试样,研究其显微组织和力学性能。采用某公司生产的AFS-M260选区激光熔化成型机打印AlSi10Mg试样,综合使用显微硬度仪、光学显微镜、扫描电镜、XRD衍射仪进行分析,得出其显微硬度、组织形貌、元素分布和物相组成。由于SLM独特的成型方式而引起共晶结构定向生长,使得试样微观组织在横纵方向呈现各向异性,但相同截面上组织从熔池边界到内部呈现梯度结构,可分为3个区域:粗晶区、热影响区、细晶区,各区域横纵截面对应的α-Al基体尺寸、平均共晶Si宽度、共晶组织含量均呈现下降趋势。试样的硬度显著大于传统铸态试样,但横纵截面相差不大。SLM成型得到的AlSi10Mg试样硬度性能极其优良,成型组织细小,这主要与SLM成型的高冷却速率相关。  相似文献   

3.
4.
通过不同扫描速度和扫描方式的选区激光熔化(SLM)技术制备了Inconel 718合金,研究了工艺参数对熔池的形态、凝固组织、晶粒大小和晶粒取向的影响。结果表明,随着扫描速度增加,熔池的深度与宽度的比值增大,曲率增大;而扫描速度为1 450mm/s时,采用单向扫描比十字交叉扫描时深宽比值更大。在熔池内,凝固组织由熔池底部的胞晶向熔池侧面的胞枝晶转变。晶粒以<001>方向择优生长,其晶粒间的取向差角以小角度(<15°)为主。当十字交叉扫描时,随着扫描速度增加,小角度取向差角的分布分数增加。当速度一定、采用十字交叉扫描时,小角度的取向差角占比为62.57%,而采用单向扫描时为47.69%。  相似文献   

5.
本文以高Mg含量Al-Si-Mg合金为基础,通过引入Zr作为晶粒细化剂,设计并制备了选区激光熔化(SLM)成形Al-8.0Si-2.56Mg-0.41Zr合金,系统研究了不同激光扫描速度对合金粉末成形性以及不同时效处理条件对SLM成形样品微观组织和力学性能的影响。结果表明,样品的SLM成形性良好,最大相对密度约为99.5%。样品由分布于熔池边界的细小等轴晶和熔池内部的柱状晶构成,样品的晶粒尺寸明显小于SLM成形Al-Si-Mg合金。成形态样品的硬度最大值为(173±2) HV。当时效温度≤200℃时,样品的Vickers硬度随时效温度的增加而逐渐增大;当时效温度≥250℃时,样品的硬度迅速降低。样品在150℃下的等温时效处理结果表明,随着时效时间的增加,样品的硬度和压缩屈服强度逐渐增大,当时效处理时间为12 h时,样品的硬度和压缩屈服强度具有最大值,分别为(194±2) HV和(512±4) MPa。  相似文献   

6.
通过选区激光熔化(SLM)技术制备Al-Mg-Sc-Zr铝合金,系统研究了不同工艺参数对铝合金粉末成形性以及不同时效处理条件对SLM成形样品组织和力学性能的影响。结果表明,在高激光功率和低激光扫描速度下,SLM成形样品的致密度较高。沿样品沉积方向可观察到熔池层层堆叠的显微组织,熔池边界和熔池内部均存在细小纳米颗粒。经不同温度时效处理后,样品的硬度和压缩屈服强度先增加后降低。SLM成形样品经400℃时效处理3 h后屈服强度达到最大值469±4 MPa。  相似文献   

7.
通过选区激光熔化(SLM)技术制备了Al-Mg-Mn-Er-Zr铝合金,系统研究了不同工艺参数对合金粉末成形性以及时效处理对沉积态样品力学性能的影响。结果表明:高激光能量密度下获得的样品不存在微裂纹,样品的孔隙率较低,最低约为0.4%。样品以柱状晶为主,熔池边界分布有少量等轴晶,平均晶粒宽度约为5μm。样品中主要包含α(Al)、Al6Mn和L12型晶体相。在350℃下,样品的硬度和压缩屈服强度随时效时间的延长先增加后降低,最大值分别为(171±1) HV和(555±12) MPa。  相似文献   

8.
针对选区激光熔化(SLM)高Mg含量AlSiMg3合金成形性差的缺点,通过Zr进行合金化,研究了工艺参数对SLM成形高Mg含量Al-Si-Mg-Zr合金的成形性及时效处理对合金组织和力学性能的影响。结果表明,SLM成形Al-Si-Mg-Zr合金的熔池边界处形成了大量的细小等轴晶,从而有效地避免了样品在成形过程中裂纹的产生,增加了样品的SLM成形性,不同激光功率和激光扫描速度下获得样品的孔隙率均低于0.3%。拉伸测试结果表明,成形态样品的屈服强度(YS)为(426±8) MPa,极限抗拉强度(UTS)为(464±12) MPa。经165℃时效处理后,由于α-Al晶粒内部纳米强化相的增多,样品的强度增加明显,时效样品的最大YS和UTS分别为(482±11)MPa和(522±10)MPa。本研究获得SLM成形Al-Si-Mg-Zr样品的强度高于目前商用的SLM成形Al-Si-Mg合金。  相似文献   

9.
基于选区激光熔化(SLM)技术熔体快速冷却的特点,通过提高Al-Si-Mg合金中Mg的含量,设计获得SLM技术专用AlSiMg3合金。系统研究了不同工艺参数和时效处理条件对SLM成形AlSiMg3合金组织和硬度的影响。结果表明,SLM成形样品均由α-Al、Si和Mg2Si相构成。高激光能量密度有利于增加粉末样品的成形性,当激光功率为160 W,扫描速度为200 mm/s时,样品具有最低孔隙率0.07%。随着激光扫描速度的增加,样品中富Si组织的比例逐渐升高,Mg元素在α-Al中固溶量逐渐增大,使得SLM成形样品的硬度逐渐升高,最大值为194±3 HV。样品经150 ℃时效处理后,由于α-Al内部纳米颗粒的析出,导致样品硬度增大,最大值为210±2 HV,远高于现有报道的SLM成形Al-Si和Al-Si-Mg铝合金。本研究报道了成形性和力学性能优异的SLM专用Al-Si-Mg合金。  相似文献   

10.
《铸造技术》2019,(7):657-661
采用选区激光熔化技术制备了18Ni300钢试样,分析了激光线能量密度对相对致密度和显微硬度的影响规律,研究了显微组织与性能的内在联系。结果表明,试样熔池中心区域为均匀的胞状组织,过渡区为细小的胞状组织,热影响区为粗大的胞状或扁状组织。同一激光线能量密度下,过渡区显微硬度高于熔池中心区域显微硬度。随激光线能量密度的降低,试样孔隙缺陷增加、显微组织不均匀,导致其相对致密度和显微硬度降低;当激光线能量密度过大时,显微组织粗大,其相对致密度和显微硬度降低;当η=543 J·m-1时,显微组织均匀,相对致密度最高,达到99.76%,显微硬度值最高,熔池中心区域和过渡区分别为351 HV和355 HV。  相似文献   

11.
基于宽粒径分布粉末(2~46 μm),应用选区激光熔化(SLM)技术制备了高Mg含量Al-14.4Mg-0.33Sc-0.19Zr铝合金.系统研究了不同工艺参数和时效处理条件对合金SLM 成形性、组织和力学性能的影响.结果表明,高激光功率可有效降低细粉飞溅对样品成形性的干扰,SLM 成形样品的最大相对密度为98.6%....  相似文献   

12.
使用真空感应熔炼气雾化法(VIGA)制备M2052锰铜粉末,通过选区激光熔化技术(SLM)直接成形合金试样,经固溶时效处理和热等静压加工,从热力学计算、显微组织分析及力学性能测试等方面对SLM法制备的锰铜合金进行了研究。研究发现SLM法成形的锰铜合金的抗拉和屈服强度较高,但冲击吸收能量低,塑性差。经过热等静压处理后,合金的综合力学性能明显提高。  相似文献   

13.
基于Al-4.8Mn-1.7Mg-0.75Sc-0.75Zr铝合金,研究了各向异性对合金显微组织及力学性能的影响。结果表明,选区激光熔化制备出无裂纹致密合金样品,纵截面显微组织有典型熔池结构,由细等轴晶粒和长柱状晶组成,横截面显微组织有条带状结构,由细等轴晶组成。经时效处理后,横向试样屈服强度、抗拉强度和伸长率分别是512 MPa、540 MPa和15%,而纵向试样的屈服强度、抗拉强度和伸长率分别是502 MPa、536 MPa和12%,力学性能各向异性不显著。  相似文献   

14.
以Ar气雾化法制备镍基高温合金粉末,利用选区激光熔化(SLM)技术制备了FGH4096M合金。运用OM、SEM、EBSD等手段研究了SLM沉积态和热处理态合金的组织和性能。结果表明,沉积态合金以奥氏体γ相基体为主,具有最高的延伸率。热处理后合金内析出大量的γ’相,γ’相均匀致密分布于合金内,能够明显提高合金强度。立方状或花瓣状γ’相与基体存在较高的晶格畸变,也能增加合金强度。精细的树枝结构和等轴结构对合金起到细晶强化作用。较高的固溶温度会促进SLM合金内回复和再结晶的发生,同时消除晶内树枝结构和等轴结构。沉积态合金平均延伸率为24.97%。经直接时效处理后的合金屈服强度和极限强度最高,其平均值分别为1459.46和1595.56 MPa。  相似文献   

15.
采用选区激光熔化(Selective Laser Melting,SLM)技术成形了2024铝合金,研究了扫描间隔对显微组织及室温力学性能的影响。结果表明:扫描间隔0.12 mm时,2024铝合金显微组织细小,硬度达124 HB,抗拉强度为372 MPa,具有较高的室温力学性能。  相似文献   

16.
17.
研究了激光选区熔化(SLM) TC4钛合金沉积态和退火态显微组织的特征及其对力学性能的影响规律。结果表明:合金组织沿激光选区熔化成形高度方向呈现外延生长,形成柱状晶,晶内存在大量的针状马氏体α''相。退火后,晶内的针状α''相转变为α+β板条组织。随着退火温度的升高,组织中α相含量逐渐降低,α片层逐渐粗化,β相含量逐渐升高;室温拉伸强度逐渐降低,塑性逐渐升高,显微硬度逐渐降低。经过800℃×2 h/FC退火热处理后,激光选区熔化成形TC4钛合金具有最佳的强度与塑性匹配。  相似文献   

18.
为明确热处理对选区激光熔化(SLM)钴铬合金成形件组织、性能的影响,利用OM、SEM、XRD、EBSD、EPMA、力学性能和电化学测试研究了激光功率为290 W、扫描速度为950 mm/s下SLM成形的钴铬合金在1150℃保温6 h的热处理前后的微观组织和性能变化。结果表明,钴铬合金成形件经过热处理后,典型熔池形貌消失,可在晶界和晶内观察到明显析出的碳化物,晶粒由粗大的柱状晶转变为细小的等轴晶,耐腐蚀性能降低,硬度变化较小,而伸长率提高约30%。通过热处理可以获得均匀的微观组织,提高γ相的体积分数,提升成形件的塑性,但会降低成形件电化学腐蚀性能。  相似文献   

19.
激光选区熔化技术是制备复杂钛结构的重要加工方式,而热处理是必要的后处理手段.首先利用激光选区熔化设备打印TC4合金块体结构,以激光功率、扫描速度及扫描间距为优化对象,以致密度为优化目标开展正交试验,得到成形工艺参数对致密度的影响排序及最优工艺参数.然后对最优工艺参数下的成形样件分别进行消除应力退火处理与完全退火处理,发...  相似文献   

20.
为有效提高GH3230高温合金的综合高温力学性能,本文利用选区激光熔化技术成形了GH3230试样,按照优化的热处理制度做了固溶处理。分析了固溶处理前后合金的显微组织结构,测试了合金的高温拉伸力学性能,研究了析出碳化物的形态和分布对高温拉伸力学性能的影响规律,探讨了高温拉伸断裂机制。结果表明:选区激光熔化GH3230合金显微组织由生长方向与材料堆积方向一致的单一γ固溶体柱状晶构成。固溶处理后,沿γ固溶体柱状晶晶界析出了呈链状分布的M6C型碳化物颗粒,在柱状晶内部析出了弥散分布的M6C型超细碳化物颗粒,柱状晶变粗,晶粒取向差异减小,出现向等轴晶转变的趋势;高温拉伸力学性能各向异性程度减弱,由于显微组织仍为具有定向凝固特征的柱状晶组织,不同方向的高温拉伸力学性能仍在差异;纵向及横向高温拉伸断裂机制均为沿晶韧性断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号