首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.  相似文献   

2.
S-palmitoylation is a reversible covalent post-translational modification of cysteine thiol side chain by palmitic acid. S-palmitoylation plays a critical role in a variety of biological processes and is engaged in several human diseases. Therefore, identifying specific sites of this modification is crucial for understanding their functional consequences in physiology and pathology. We present a random forest (RF) classifier-based consensus strategy (RFCM-PALM) for predicting the palmitoylated cysteine sites on synaptic proteins from male/female mouse data. To design the prediction model, we have introduced a heuristic strategy for selection of the optimum set of physicochemical features from the AAIndex dataset using (a) K-Best (KB) features, (b) genetic algorithm (GA), and (c) a union (UN) of KB and GA based features. Furthermore, decisions from best-trained models of the KB, GA, and UN-based classifiers are combined by designing a three-star quality consensus strategy to further refine and enhance the scores of the individual models. The experiment is carried out on three categorized synaptic protein datasets of a male mouse, female mouse, and combined (male + female), whereas in each group, weighted data is used as training, and knock-out is used as the hold-out set for performance evaluation and comparison. RFCM-PALM shows ~80% area under curve (AUC) score in all three categories of datasets and achieve 10% average accuracy (male—15%, female—15%, and combined—7%) improvements on the hold-out set compared to the state-of-the-art approaches. To summarize, our method with efficient feature selection and novel consensus strategy shows significant performance gains in the prediction of S-palmitoylation sites in mouse datasets.  相似文献   

3.
Genetic Creutzfeldt–Jakob disease (gCJD) is a subtype of genetic prion diseases (gPrDs) caused by the accumulation of mutated pathological prion proteins (PrPSc). gCJD has a phenotypic similarity with sporadic CJD (sCJD). In Japan, gCJD with a Val to Ile substitution at codon 180 (V180I-gCJD) is the most frequent gPrD, while the mutation is extremely rare in countries other than Japan and Korea. In this article, we aim to review previously elucidated clinical and biochemical features of V180I-gCJD, expecting to advance the understanding of this unique subtype in gCJD. Compared to classical sCJD, specific clinical features of V180I-gCJD include older age at onset, a relatively slow progression of dementia, and a lower positivity for developing myoclonus, cerebellar, pyramidal signs, and visual disturbance. Diffuse edematous ribboning hyperintensity of the cerebral cortex, without occipital lobes in diffusion-weighted magnetic resonance imaging, is also specific. Laboratory data reveal the low positivity of PrPSc in the cerebrospinal fluid and periodic sharp wave complexes on an electroencephalogram. Most patients with V180I-gCJD have been reported to have no family history, probably due to the older age at onset, and clinical and biochemical features indicate the specific phenotype associated with the prion protein gene mutation.  相似文献   

4.
Delta/Serrate/LAG-2 (DSL) proteins, which serve as ligands for Notch receptors, mediate direct cell–cell interactions involved in the determination of cell fate and functioning. The present study aimed to explore the role of androgens and estrogens, and their receptors in the regulation of DSL proteins in Sertoli cells. To this end, primary rat Sertoli cells and TM4 Sertoli cell line were treated with either testosterone or 17β-estradiol and antagonists of their receptors. To confirm the role of particular receptors, knockdown experiments were performed. mRNA and protein expressions of Jagged1 (JAG1), Delta-like1 (DLL1), and Delta-like4 (DLL4) were analyzed using RT-qPCR, Western blot, and immunofluorescence. Testosterone caused downregulation of JAG1 and DLL1 expression, acting through membrane androgen receptor ZRT- and Irt-like protein 9 (ZIP9) or nuclear androgen receptor (AR), respectively. DLL4 was stimulated by testosterone in the manner independent of AR and ZIP9 in Sertoli cells. The expression of all studied DSL proteins was upregulated by 17β-estradiol. Estrogen action on JAG1 and DLL1 was mediated chiefly via estrogen receptor α (ERα), while DLL4 was controlled via estrogen receptor β (ERβ) and membrane G-protein-coupled estrogen receptor (GPER). To summarize, the co-operation of nuclear and membrane receptors for sex steroids controls DSL proteins in Sertoli cells, contributing to balanced Notch signaling activity in seminiferous epithelium.  相似文献   

5.
The membrane transport system is built on the proper functioning of the endoplasmic reticulum (ER). The accumulation of unfolded proteins in the ER lumen (ER stress) disrupts ER homeostasis and disturbs the transport system. In response to ER stress, eukaryotic cells activate intracellular signaling (named the unfolded protein response, UPR), which contributes to the quality control of secretory proteins. On the other hand, the deleterious effects of UPR on plant health and growth characteristics have frequently been overlooked, due to limited information on this mechanism. However, recent studies have shed light on the molecular mechanism of plant UPR, and a number of its unique characteristics have been elucidated. This study briefly reviews the progress of understanding what is happening in plants under ER stress conditions.  相似文献   

6.
In comparing two human lung cancer cells, we previously found lower levels of acetylcholinesterase (AChE) and intact amyloid-β40/42 (Aβ), and higher levels of mature brain-derived neurotrophic factor (mBDNF) in the media of H1299 cells as compared to A549 cell media. In this study, we hypothesized that the levels of soluble amyloid precursor protein α (sAPPα) are regulated by AChE and mBDNF in A549 and H1299 cell media. The levels of sAPPα were higher in the media of H1299 cells. Knockdown of AChE led to increased sAPPα and mBDNF levels and correlated with decreased levels of intact Aβ40/42 in A549 cell media. AChE and mBDNF had opposite effects on the levels of Aβ and sAPPα and were found to operate through a mechanism involving α-secretase activity. Treatment with AChE decreased sAPPα levels and simultaneously increased the levels of intact Aβ40/42 suggesting a role of the protein in shifting APP processing away from the non-amyloidogenic pathway and toward the amyloidogenic pathway, whereas treatment with mBDNF led to opposite effects on those levels. We also show that the levels of sAPPα are regulated by protein kinase C (PKC), extracellular signal-regulated kinase (ERK)1/2, phosphoinositide 3 Kinase (PI3K), but not by protein kinase A (PKA).  相似文献   

7.
Intrinsically disordered regions (IDRs) in proteins are highly abundant, but they are still commonly viewed as long stretches of polar, solvent‐accessible residues. Here we show that the disordered C‐terminal domain (CTD) of HIV‐1 Rev has two subregions that carry out two distinct complementary roles of regulating protein oligomerization and contributing to stability. We propose that this takes place through a delicate balance between charged and hydrophobic residues within the IDR. This means that mutations in this region, as well as the known mutations in the structured region of the protein, can affect protein function. We suggest that IDRs in proteins should be divided into subdomains similarly to structured regions, rather than being viewed as long flexible stretches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号