首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.  相似文献   

2.
3.
The major cause of mortality in patients with chronic kidney disease (CKD) is atherosclerosis related to traditional and non-traditional risk factors. However, the understanding of the molecular specificity that distinguishes the risk factors for classical cardiovascular disease (CVD) and CKD-related atherosclerosis (CKD-A) is far from complete. In this study we investigated the disease-related differences in the proteomes of patients with atherosclerosis related and non-related to CKD. Plasma collected from patients in various stages of CKD, CVD patients without symptoms of kidney dysfunction, and healthy volunteers (HVs), were analyzed by a coupled label-free and mass spectrometry approach. Dysregulated proteins were confirmed by an enzyme-linked immunosorbent assay (ELISA). All proteomic data were correlated with kidney disease development and were subjected to bioinformatics analysis. One hundred sixty-two differentially expressed proteins were identified. By directly comparing the plasma proteomes from HVs, CKD, and CVD patients in one study, we demonstrated that proteins involved in inflammation, blood coagulation, oxidative stress, vascular damage, and calcification process exhibited greater alterations in patients with atherosclerosis related with CKD. These data indicate that the above nontraditional risk factors are strongly specific for CKD-A and appear to be less essential for the development of “classical” CVD.  相似文献   

4.
An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.  相似文献   

5.
The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutathione mixed disulfides supports the reversible protein S-glutathionylation as a common feature of redox signal transduction, able to regulate the activities of several redox sensitive proteins. In particular, protein S-glutathionylation is emerging as a critical signaling mechanism in cardiovascular diseases, because it regulates numerous physiological processes involved in cardiovascular homeostasis, including myocyte contraction, oxidative phosphorylation, protein synthesis, vasodilation, glycolytic metabolism and response to insulin. Thus, perturbations in protein glutathionylation status may contribute to the etiology of many cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy and atherosclerosis. Various reports show the importance of oxidative cysteine modifications in modulating cardiovascular function. In this review, we illustrate tools and strategies to monitor protein S-glutathionylation and describe the proteins so far identified as glutathionylated in myocardial contraction, hypertrophy and inflammation.  相似文献   

6.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder leading to deterioration of kidney function and end stage kidney disease (ESKD). A number of molecular processes are dysregulated in ADPKD but the exact mechanism of disease progression is not fully understood. We measured protein biomarkers being linked to ADPKD-associated molecular processes via ELISA in urine and serum in a cohort of ADPKD patients as well as age, gender and eGFR matched CKD patients and healthy controls. ANOVA and t-tests were used to determine differences between cohorts. Spearman correlation coefficient analysis was performed to assess coregulation patterns of individual biomarkers and renal function. Urinary epidermal growth factor (EGF) and serum apelin (APLN) levels were significantly downregulated in ADPKD patients. Serum vascular endothelial growth factor alpha (VEGFA) and urinary angiotensinogen (AGT) were significantly upregulated in ADPKD patients as compared with healthy controls. Arginine vasopressin (AVP) was significantly upregulated in ADPKD patients as compared with CKD patients. Serum VEGFA and VIM concentrations were positively correlated and urinary EGF levels were negatively correlated with urinary AGT levels. Urinary EGF and AGT levels were furthermore significantly associated with estimated glomerular filtration rate (eGFR) in ADPKD patients. In summary, altered protein concentrations in body fluids of ADPKD patients were found for the mechanistic markers EGF, APLN, VEGFA, AGT, AVP, and VIM. In particular, the connection between EGF and AGT during progression of ADPKD warrants further investigation.  相似文献   

7.
Pathological insults usually disturb the folding capacity of cellular proteins and lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which leads to so-called “ER stress”. Increasing evidence indicates that ER stress acts as a trigger factor for the development and progression of many kidney diseases. The unfolded protein responses (UPRs), a set of molecular signals that resume proteostasis under ER stress, are thought to restore the adaptive process in chronic kidney disease (CKD) and renal fibrosis. Furthermore, the idea of targeting UPRs for CKD treatment has been well discussed in the past decade. This review summarizes the up-to-date literature regarding studies on the relationship between the UPRs, systemic fibrosis, and renal diseases. We also address the potential therapeutic possibilities of renal diseases based on the modulation of UPRs and ER proteostasis. Finally, we list some of the current UPR modulators and their therapeutic potentials.  相似文献   

8.
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of metabolic abnormalities ranging from simple triglyceride accumulation in the hepatocytes to hepatic steatosis with inflammation, ballooning and fibrosis. It has been demonstrated that the pathogenesis of NAFLD involves increased oxidative stress, with consumption of the major cellular antioxidant, glutathione (GSH). Liver has a fundamental role in sulfur compound metabolism, although the data reported on plasma thiols status in NAFLD are conflicting. We recruited 63 NAFLD patients, and we analyzed all plasma thiols, such as homocysteine (Hcy), cysteine (Cys), cysteinylglycine (CysGly) and GSH, by high-performance liquid chromatography (HPLC) with fluorescence detection. Hcy, Cys and CysGly plasma levels increased in NAFLD patients (p < 0.0001); whereas GSH levels were decreased in NAFLD patients when compared to controls (p < 0.0001). On the contrary, patients with steatohepatitis exhibited lower levels of Hcy and Cys than subjects without. Furthermore, a positive correlation was found between Hcy and Cys and the presence of fibrosis in children with NAFLD. Taken together, these data demonstrated a defective hepatic sulfur metabolism in children with NAFLD, and that high levels of Hcy and Cys probably correlates with a pattern of more severe histological liver damage, due to mechanisms that require further studies.  相似文献   

9.
Chronic kidney disease (CKD) refers to the phenomenon of progressive decline in the glomerular filtration rate accompanied by adverse consequences, including fluid retention, electrolyte imbalance, and an increased cardiovascular risk compared to those with normal renal function. The triggers for the irreversible renal function deterioration are multifactorial, and diabetes mellitus serves as a major contributor to the development of CKD, namely diabetic kidney disease (DKD). Recently, epigenetic dysregulation emerged as a pivotal player steering the progression of DKD, partly resulting from hyperglycemia-associated metabolic disturbances, rising oxidative stress, and/or uncontrolled inflammation. In this review, we describe the major epigenetic molecular mechanisms, followed by summarizing current understandings of the epigenetic alterations pertaining to DKD. We highlight the epigenetic regulatory processes involved in several crucial renal cell types: Mesangial cells, podocytes, tubular epithelia, and glomerular endothelial cells. Finally, we highlight epigenetic biomarkers and related therapeutic candidates that hold promising potential for the early detection of DKD and the amelioration of its progression.  相似文献   

10.
Chronic kidney disease (CKD) is a non-specific type of kidney disease that causes a gradual decline in kidney function (from months to years). CKD is a significant risk factor for death, cardiovascular disease, and end-stage renal disease. CKDs of different origins may have the same clinical and laboratory manifestations but different progression rates, which requires early diagnosis to determine. This review focuses on protein/peptide biomarkers of the leading causes of CKD: diabetic nephropathy, IgA nephropathy, lupus nephritis, focal segmental glomerulosclerosis, and membranous nephropathy. Mass spectrometry (MS) approaches provided the most information about urinary peptide and protein contents in different nephropathies. New analytical approaches allow urinary proteomic–peptide profiles to be used as early non-invasive diagnostic tools for specific morphological forms of kidney disease and may become a safe alternative to renal biopsy. MS studies of the key pathogenetic mechanisms of renal disease progression may also contribute to developing new approaches for targeted therapy.  相似文献   

11.
Chronic kidney disease (CKD) is a widely diffuse pathological condition which deeply impacts upon an affected patient’s quality of life and its worldwide rate is predicted to further rise. The main biological mechanism underlying CKD is renal fibrosis, a non-reversible process representing, for the affected system, a point of no return of tissue damage and dysfunction, deeply reducing the possible therapeutic strategies at the disposal of physicians. The best tool clinicians can use to address the extent of renal fibrosis at any level (glomeruli, tubule-interstitium, vasculature) is kidney biopsy that, despite its overall safety, remains an invasive procedure showing some shortcomings. Thus, the identification of novel non-invasive renal fibrosis biomarkers would be of fundamental importance. Here, when systematically reviewing the available evidence on serological biomarkers associated with renal fibrosis evaluated in patients suffering from CKD in the last five years, we found that despite the presence of several promising biomarkers, the level of observed evidence is still very scattered. Probably, the use of multiple measures capable of addressing different aspects involved in this condition would be the most suitable way to capture the high complexity characterizing the renal fibrotic process, having consequently a great impact on clinical practice by maximizing prevention, diagnosis, and management.  相似文献   

12.
The prevalence of chronic kidney disease (CKD) is increasing worldwide, and the mortality rate continues to be unacceptably high. The biomarkers currently used in clinical practice are considered relevant when there is already significant renal impairment compromising the early use of potentially successful therapeutic interventions. More sensitive and specific biomarkers to detect CKD earlier on and improve patients’ prognoses are an important unmet medical need. The aim of this review is to summarize the recent literature on new promising early CKD biomarkers of renal function, tubular lesions, endothelial dysfunction and inflammation, and on the auspicious findings from metabolomic studies in this field. Most of the studied biomarkers require further validation in large studies and in a broad range of populations in order to be implemented into routine CKD management. A panel of biomarkers, including earlier biomarkers of renal damage, seems to be a reasonable approach to be applied in clinical practice to allow earlier diagnosis and better disease characterization based on the underlying etiologic process.  相似文献   

13.
Classical pediatric Hodgkin Lymphoma (HL) is a rare malignancy. Therapeutic regimens for its management may be optimized by establishing treatment response early on. The aim of this study was to identify plasma protein biomarkers enabling the prediction of relapse in pediatric/adolescent HL patients treated under the pediatric EuroNet-PHL-C2 trial. We used untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics at the time of diagnosis—before any therapy—as semiquantitative method to profile plasma proteins specifically associated with relapse in 42 children with nodular sclerosing HL. In both the exploratory and the validation cohorts, six proteins (apolipoprotein E, C4b-binding protein α chain, clusterin, fibrinogen γ chain, prothrombin, and vitronectin) were more abundant in the plasma of patients whose HL relapsed (|fold change| ≥ 1.2, p < 0.05, Student’s t-test). Predicting protein function with the Gene Ontology classification model, the proteins were included in four biological processes (p < 0.01). Using immunoblotting and Luminex assays, we validated two of these candidate biomarkers—C4b-binding protein α chain and clusterin—linked to innate immune response function (GO:0045087). This study identified C4b-binding protein α chain and clusterin as candidate early plasma biomarkers of HL relapse, and important for the purpose of shedding light on the molecular scenario associated with immune response in patients treated under the EuroNet-PHL-C2 trial.  相似文献   

14.
Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.  相似文献   

15.
Low-intensity pulsed ultrasound (LIPUS), a therapeutic type of ultrasound, is known to enhance bone fracture repair processes and help some tissues to heal. Here, we investigated the therapeutic potential of LIPUS for the treatment of chronic kidney disease (CKD) in two CKD mouse models. CKD mice were induced using both unilateral renal ischemia/reperfusion injury (IRI) with nephrectomy and adenine administration. The left kidneys of the CKD mice were treated using LIPUS with the parameters of 3 MHz, 100 mW/cm2, and 20 min/day, based on the preliminary experiments. The mice were euthanized 14 days after IRI or 28 days after the end of adenine administration. LIPUS treatment effectively alleviated the decreases in the body weight and albumin/globulin ratio and the increases in the serum renal functional markers, fibroblast growth factor-23, renal pathological changes, and renal fibrosis in the CKD mice. The parameters for epithelial–mesenchymal transition (EMT), senescence-related signal induction, and the inhibition of α-Klotho and endogenous antioxidant enzyme protein expression in the kidneys of the CKD mice were also significantly alleviated by LIPUS. These results suggest that LIPUS treatment reduces CKD progression through the inhibition of EMT and senescence-related signals. The application of LIPUS may be an alternative non-invasive therapeutic intervention for CKD therapy.  相似文献   

16.
Intracellular sorting and the abundance of sessile plant plasma membrane proteins are imperative for sensing and responding to environmental inputs. A key determinant for inducing adjustments in protein localization and hence functionality is their reversible covalent modification by the small protein modifier ubiquitin, which is for example responsible for guiding proteins from the plasma membrane to endosomal compartments. This mode of membrane protein sorting control requires the catalytic activity of E3 ubiquitin ligases, amongst which members of the RING DOMAIN LIGASE (RGLG) family have been implicated in the formation of lysine 63-linked polyubiquitin chains, serving as a prime signal for endocytic vacuolar cargo sorting. Nevertheless, except from some indirect implications for such RGLG activity, no further evidence for their role in plasma membrane protein sorting has been provided so far. Here, by employing RGLG1 reporter proteins combined with assessment of plasma membrane protein localization in a rglg1 rglg2 loss-of-function mutant, we demonstrate a role for RGLGs in cargo trafficking between plasma membrane and endosomal compartments. Specifically, our findings unveil a requirement for RGLG1 association with endosomal sorting compartments for fundamental aspects of plant morphogenesis, underlining a vital importance for ubiquitylation-controlled intracellular sorting processes.  相似文献   

17.
Background: The connection between uric acid (UA) and renal impairment is well known due to the urate capacity to precipitate within the tubules or extra-renal system. Emerging studies allege a new hypothesis concerning UA and renal impairment involving a pro-inflammatory status, endothelial dysfunction, and excessive activation of renin–angiotensin–aldosterone system (RAAS). Additionally, hyperuricemia associated with oxidative stress is incriminated in DNA damage, oxidations, inflammatory cytokine production, and even cell apoptosis. There is also increasing evidence regarding the association of hyperuricemia with chronic kidney disease (CKD), cardiovascular disease, and metabolic syndrome or diabetes mellitus. Conclusions: Important aspects need to be clarified regarding hyperuricemia predisposition to oxidative stress and its effects in order to initiate the proper treatment to determine the optimal maintenance of UA level, improving patients’ long-term prognosis and their quality of life.  相似文献   

18.
Patients with chronic kidney disease (CKD) are more prone to oxidative stress and chronic inflammation, which may lead to an increase in the synthesis of advanced glycation end products (AGEs). Because AGEs are mostly removed by healthy kidneys, AGE accumulation is a result of both increased production and decreased kidney clearance. On the other hand, AGEs may potentially hasten decreasing kidney function in CKD patients, and are independently related to all-cause mortality. They are one of the non-traditional risk factors that play a significant role in the underlying processes that lead to excessive cardiovascular disease in CKD patients. When AGEs interact with their cell-bound receptor (RAGE), cell dysfunction is initiated by activating nuclear factor kappa-B (NF-κB), increasing the production and release of inflammatory cytokines. Alterations in the AGE-RAGE system have been related to the development of several chronic kidney diseases. Soluble RAGE (sRAGE) is a decoy receptor that suppresses membrane-bound RAGE activation and AGE-RAGE-related toxicity. sRAGE, and more specifically, the AGE/sRAGE ratio, may be promising tools for predicting the prognosis of kidney diseases. In the present review, we discuss the potential role of AGEs and sRAGE as biomarkers in different kidney pathologies.  相似文献   

19.
Asymmetric dimethylarginine (ADMA) is considered an independent mortality and cardiovascular risk factor in chronic kidney disease (CKD) patients, and contributes to the development of renal fibrosis. Quercetin (QC), a natural component of foods, protects against renal injury. Here, we explored the possible mechanisms that are responsible for ADMA-induced renal fibrosis and the protective effect of QC. We found that ADMA treatment activated the endoplasmic reticulum (ER) stress sensor proteins phosphorylated protein kinase RNA-activated-like ER kinase (PERK) and inositol requiring-1α (IRE1), which correspondingly induced C/EBP homologous protein (CHOP) expression and phosphorylated c-Jun N-terminal kinase (JNK) phosphorylation in glomerular endothelial cells (GEnCs). Following this, ADMA promoted ER stress-induced apoptosis and resulted in transforming growth factor β (TGF-β) expression in GEnCs. SP600125, an inhibitor of JNK, and CHOP siRNA protected against ADMA-induced cell apoptosis and TGF-β expression. QC prevented ADMA-induced PERK and IRE1 apoptotic ER stress pathway activation. Also, ADMA-induced GEnCs apoptosis and TGF-β expression was reduced by QC. Overexpression of CHOP blocked QC-mediated protection from apoptosis in ER stressed cells. Overall, these observations indicate that ADMA may induce GEnCs apoptosis and TGF-β expression by targeting the PERK-CHOP and IRE1-JNK pathway. In addition, drugs such as QC targeting ER stress may hold great promise for the development of novel therapies against ADMA-induced renal fibrosis.  相似文献   

20.
The prevalence of idiopathic male infertility is high, up to 75% of patients with abnormal sperm parameters. Hence, the research of its causes is mandatory. Oxidative stress (OS) can be responsible for male infertility in 30–80% of cases. In recent years, seminal plasma (SP) proteomics has developed as a useful tool to provide biomarkers of specific diseases. This systematic review aims to collect the available evidence on the changes of SP proteome in patients exposed to OS to provide possible SP biomarkers of sperm OS. To accomplish this, the following keyterms “seminal fluid proteome”, “seminal plasma proteome”, “oxidative stress”, and “sperm oxidative stress” were used and 137 records were found. Among these, 17 were finally included. Nine proteins involved with OS were found overexpressed in patients with OS. Twenty-three proteins were found differentially expressed in patients with clinical conditions associated with OS, such as varicocele, male accessory gland infection/inflammation, cigarette smoke, and obesity. These proteins do not seem to overlap among the clinical conditions taken into account. We speculate that specific SP proteins may mediate OS in different clinical conditions. Altogether, these results suggest that proteomics could help to better understand some of the molecular mechanisms involved in the pathogenesis of infertility. However, further studies are needed to identify potential biomarkers of male infertility with valuable clinical significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号