首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-aged women. It is characterized by chronic anovulation, hyperandrogenism, and the presence of polycystic ovary in ultrasound examination. PCOS is specified by an increased number of follicles at all growing stages, mainly seen in the preantral and small antral follicles and an increased serum level of Anti-Müllerian Hormone (AMH). Because of the strong correlation between circulating AMH levels and antral follicle count on ultrasound, Anti-Müllerian Hormone has been proposed as an alternative marker of ovulatory dysfunction in PCOS. However, the results from the current literature are not homogeneous, and the specific threshold of AMH in PCOS and PCOM is, therefore, very challenging. This review aims to update the current knowledge about AMH, the pathophysiology of AMH in the pathogenesis of PCOS, and the role of Anti-Müllerian Hormone in the treatment of this syndrome.  相似文献   

2.
Anti-Müllerian hormone (AMH) is secreted by Sertoli or granulosa cells. Recent evidence suggests that AMH may play a role in the pathogenesis of hypogonadotropic hypogonadism (HH) and that its serum levels could help to discriminate HH from delayed puberty. Moreover, the growth hormone (GH)/insulin-like growth factor 1 (IGF1) system may be involved in the function of gonadotropin-releasing hormone (GnRH) neurons, as delayed puberty is commonly found in patients with GH deficiency (GHD) or with Laron syndrome, a genetic form of GH resistance. The comprehension of the stimuli enhancing the migration and secretory activity of GnRH neurons might shed light on the causes of delay of puberty or HH. With these premises, we aimed to better clarify the role of the AMH, GH, and IGF1 on GnRH neuron migration and GnRH secretion, by taking advantage of previously established models of immature (GN11 cell line) and mature (GT1-7 cell line) GnRH neurons. Expression of Amhr, Ghr, and Igf1r genes was confirmed in both cell lines. Cells were then incubated with increasing concentrations of AMH (1.5–150 ng/mL), GH (3–1000 ng/mL), or IGF1 (1.5–150 ng/mL). All hormones were able to support GN11 cell chemomigration. AMH, GH, and IGF1 significantly stimulated GnRH secretion by GT1-7 cells after a 90-min incubation. To the best of our knowledge, this is the first study investigating the direct effects of GH and IGF1 in GnRH neuron migration and of GH in the GnRH secreting pattern. Taken together with previous basic and clinical studies, these findings may provide explanatory mechanisms for data, suggesting that AMH and the GH-IGF1 system play a role in HH or the onset of puberty.  相似文献   

3.
Spermatogenesis and folliculogenesis involve cell–cell interactions and gene expression orchestrated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). FSH regulates the proliferation and maturation of germ cells independently and in combination with LH. In humans, the requirement for high intratesticular testosterone (T) concentration in spermatogenesis remains both a dogma and an enigma, as it greatly exceeds the requirement for androgen receptor (AR) activation. Several data have challenged this dogma. Here we report our findings on a man with mutant LH beta subunit (LHβ) that markedly reduced T production to 1–2% of normal., but despite this minimal LH stimulation, T production by scarce mature Leydig cells was sufficient to initiate and maintain complete spermatogenesis. Also, in the LH receptor (LHR) knockout (LuRKO) mice, low-dose T supplementation was able to maintain spermatogenesis. In addition, in antiandrogen-treated LuRKO mice, devoid of T action, the transgenic expression of a constitutively activating follicle stimulating hormone receptor (FSHR) mutant was able to rescue spermatogenesis and fertility. Based on rodent models, it is believed that gonadotropin-dependent follicular growth begins at the antral stage, but models of FSHR inactivation in women contradict this claim. The complete loss of FSHR function results in the complete early blockage of folliculogenesis at the primary stage, with a high density of follicles of the prepubertal type. These results should prompt the reassessment of the role of gonadotropins in spermatogenesis, folliculogenesis and therapeutic applications in human hypogonadism and infertility.  相似文献   

4.
5.
6.
In this paper, newly discovered mechanisms of atresia and cell death processes in bovine ovarian follicles are investigated. For this purpose the mRNA expression of receptor interacting protein kinases 1 and 3 (RIPK1 and RIPK3) of the granulosa and theca cells derived from healthy and atretic follicles are studied. The follicles were assigned as either healthy or atretic based on the estradiol to progesterone ratio. A statistically significant difference was recorded for the mRNA expression of a RIPK1 and RIPK3 between granulosa cells from healthy and atretic follicles. To further investigate this result a systems biology approach was used. The genes playing roles in necroptosis, apoptosis and atresia were chosen and a network was created based on human genes annotated by the IMEx database in Cytoscape to identify hubs and bottle-necks. Moreover, correlation networks were built in the Cluepedia plug-in. The networks were created separately for terms describing apoptosis and programmed cell death. We demonstrate that necroptosis (RIPK—dependent cell death pathway) is an alternative mechanism responsible for death of bovine granulosa and theca cells. We conclude that both apoptosis and necroptosis occur in the granulosa cells of dominant follicles undergoing luteinisation and in the theca cells from newly selected follicles.  相似文献   

7.
8.
9.
Colon adenocarcinoma (COAD) is the most common type of gastrointestinal cancer and is still the third leading cause of cancer-related mortality worldwide. Accurate screening tools for early diagnosis and prediction of prognosis and precision treatment strategies are urgently required to accommodate the unmet medical needs of COAD management. We herein aimed to explore the significance of the microRNA (miR)-216a/growth differentiation factor 15 (GDF15) axis in terms of clinical value, tumor immunity, and potential mechanisms in COAD by using multi-omic analysis. The gene expression levels of miR-216a and GDF15 showed an increase in the COAD group compared to those of the normal group. The expression of miR-216a presented a negative correlation with GDF15 in COAD tumor tissue. The use of an in vitro luciferase reporter assay and bioinformatic prediction revealed that miR-216a-3p acted toward translational inhibition on GDF15 by targeting its 3′untranslated region (UTR) site. High miR-216a expression was associated with decreased overall survival (OS), while the high expression of GDF15 was associated with increased OS. Enriched type 1 T-helper (Th1), enriched regulatory T (Treg), enriched eosinophils, and decreased nature killer T-cells (NKTs) in COAD tumor tissue may play counteracting factors on the tumor-regulatory effects of miR-216a and GDF15. In addition, high GDF15 expression had associations with suppressed immunoinhibitory genes and negative correlations with the infiltration of macrophages and endothelial cells. The enrichment analysis revealed that GDF15 and its co-expression network may be implicated in mitochondrial organization, apoptosis signaling, and endoplasmic reticulum (ER) stress response. The Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) analysis identified that Gemcitabine acted as a precision treatment for COAD when GDF15 expression was low. This study supports the miR-216a/GDF15 axis as a diagnostic/prognostic panel for COAD, identifies Th1, Treg, eosinophils, and NKTs as counteracting factors, indicates potential relationships underlying immunomodulation, mitochondrial organization, apoptotic signaling, and ER stress and unveil Gemcitabine as a potential drug for the development of treatment strategy when combined with targeting GDF15.  相似文献   

10.
11.
In the present investigation, we examined whether a change in whole body energy fluxes could affect ovarian follicular development, employing mice ectopically expressing uncoupling protein 1 in skeletal muscle (UCP1-TG). Female UCP1-TG and wild-type (WT) mice were dissected at the age of 12 weeks. Energy intake and expenditure, activity, body weight and length, and body composition were measured. Plasma insulin, glucose, leptin, plasma fibroblast growth factor 21 (FGF21) and plasma insulin-like growth factor 1 (IGF1) levels were analyzed and ovarian follicle and corpus luteum numbers were counted. IGF1 signaling was analyzed by immunohistochemical staining for the activation of insulin receptor substrate 1/2 (IRS1/2) and AKT. UCP1-TG female mice had increased energy expenditure, reduced body size, maintained adiposity, and decreased IGF1 concentrations compared to their WT littermates, while preantral and antral follicle numbers were reduced by 40% and 60%, respectively. Corpora lutea were absent in 40% of the ovaries of UCP1-TG mice. Phospho-IRS1, phospho-AKT -Ser473 and -Thr308 immunostaining was present in the granulosa cells of antral follicles in WT ovaries, but faint to absent in the antral follicles of UCP1-TG mice. In conclusion, the reduction in circulating IGF1 levels due to the ectopic expression of UCP1 is associated with reduced immunostaining of the IRS1-PI3/AKT pathway, which may negatively affect ovarian follicle development and ovulation.  相似文献   

12.
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.  相似文献   

13.
Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.  相似文献   

14.
Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12–15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.  相似文献   

15.
In mammalian, the periodic growth and development of ovarian follicles constitutes the physiological basis of female estrus and ovulation. Concomitantly, follicular angiogenesis exerts a pivotal role in the growth of ovarian follicles. Melatonin (N-acetyl-5-methoxytryptamine, Mel), exists in follicle fluid, was suggested to affect the development of follicles and angiogenesis. This research was conducted to investigate the effects and mechanisms of Mel on the development of ovarian follicles and its angiogenesis. In total, 40 ICR mice at age of 3 weeks were allocated into four groups at liberty: control, Mel, FSH and FSH + Mel for a 12-day trial. Ovaries were collected at 8:00 a.m. on Day 13 for detecting the development of ovarian follicles and angiogenesis. Results indicated that Mel promoted the development of ovarian follicles of 50–250 μm (secondary follicles) and periphery angiogenesis, while FSH remarkably increased the number of antral follicles and periphery angiogenesis. Mechanically, Mel and FSH may regulate the expression of VEGF and antioxidant enzymes in different follicular stages. In conclusion, Mel primarily acted on the secondary follicles, while FSH mainly promoted the development of antral follicles. They both conduced to related periphery angiogenesis by increasing the expression of VEGF. These findings may provide new targets for the regulating of follicular development.  相似文献   

16.
The use of assisted reproductive technologies (ART) still requires strategies through which to maximize individual fertility chances. In vitro folliculogenesis (ivF) may represent a valid option to convey the large source of immature oocytes in ART. Several efforts have been made to set up ivF cultural protocols in medium-sized mammals, starting with the identification of the most suitable gonadotropic stimulus. In this study, Equine Chorionic Gonadotropin (eCG) is proposed as an alternative to Follicle Stimulating Hormone (FSH) based on its long superovulation use, trans-species validation, long half-life, and low costs. The use of 3D ivF on single-ovine preantral (PA) follicles allowed us to compare the hormonal effects and to validate their influence under two different cultural conditions. The use of eCG helped to stimulate the in vitro growth of ovine PA follicles by maximizing its influence under FBS-free medium. Higher performance of follicular growth, antrum formation, steroidogenic activity and gap junction marker expression were recorded. In addition, eCG, promoted a positive effect on the germinal compartment, leading to a higher incidence of meiotic competent oocytes. These findings should help to widen the use of eCG to ivF as a valid and largely available hormonal support enabling a synchronized in vitro follicle and oocyte development.  相似文献   

17.
Human mesenchymal stem cells (MSCs) have the potential to differentiate into nucleus pulposus (NP)-like cells under specific stimulatory conditions. Thus far, the effects of bone morphogenetic protein 3 (BMP3) and the cocktail effects of BMP3 and transforming growth factor (TGF)-β on MSC proliferation and differentiation remain obscure. Therefore, this study was designed to clarify these unknowns. MSCs were cultured with various gradients of BMP3 and BMP3/TGF-β, and compared with cultures in basal and TGF-β media. Cell proliferation, glycosaminoglycan (GAG) content, gene expression, and signaling proteins were measured to assess the effects of BMP3 and BMP3/TGF-β on MSCs. Cell number and GAG content increased upon the addition of BMP3 in a dose-dependent manner. The expression of COL2A1, ACAN, SOX9, and KRT19 increased following induction with BMP3 and TGF-β, in contrast to that of COL1A1, ALP, OPN, and COMP. Smad3 phosphorylation was upregulated by BMP3 and TGF-β, but BMP3 did not affect the phosphorylation of extracellular-signal regulated kinase (ERK) 1/2 or c-Jun N-terminal kinase (JNK). Our results reveal that BMP3 enhances MSC proliferation and differentiation into NP-like cells, as indicated by increased cell numbers and specific gene expressions, and may also cooperate with TGF-β induced positive effects. These actions are likely related to the activation of TGF-β signaling pathway.  相似文献   

18.
19.
The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells. TWSG1 suppressed BMP7-induced, but not BMP2-induced, EC cell sphere formation and migration. Our results suggest that BMP signaling promotes EC tumorigenesis, and that TWSG1 antagonizes BMP7 in EC. BMP signaling inhibitors, in combination with chemotherapy, might be useful in the treatment of EC patients.  相似文献   

20.
Human ovarian cells are phenotypically very different and are often only available in limited amounts. Despite the fact that reference gene (RG) expression stability has been validated in oocytes and other ovarian cells from several animal species, the suitability of a single universal RG in the different human ovarian cells and tissues has not been determined. The present study aimed to validate the expression stability of five of the most used RGs in human oocytes, cumulus cells, preantral follicles, ovarian medulla, and ovarian cortex tissue. The selected genes were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), beta-2-microglobulin (B2M), large ribosomal protein P0 (RPLP0), beta-actin (ACTB), and peptidylprolyl isomerase A (PPIA). Overall, the stability of all RGs differed among ovarian cell types and tissues. NormFinder identified ACTB as the best RG for oocytes and cumulus cells, and B2M for medulla tissue and isolated follicles. The combination of two RGs only marginally increased the stability, indicating that using a single validated RG would be sufficient when the available testing material is limited. For the ovarian cortex, depending on culture conditions, GAPDH or ACTB were found to be the most stable genes. Our results highlight the importance of assessing RGs for each cell type or tissue when performing RT-qPCR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号