首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
利用高能球磨法和粉末烧结法制备了MnFe1-xTixP0.77Ge0.23(x=0.03, 0.04, 0.06, 0.08, 0.09)系列化合物。室温X射线衍射结果表明化合物均呈现Fe2P型六角结构,随着Ti含量的增加,晶格常数a、b减小,晶格常数c增大,晶胞体积有所增大。变温X射线衍射实验结果表明,MnFe0.94Ti0.06P0.77Ge0.23化合物在305~350 K温度区间内发生铁磁到顺磁的相转变,存在磁弹耦合现象。MnFe1-xTixP0.77Ge0.23(x=0.03, 0.04, 0.06, 0.08, 0.09)化合物的磁性测量结果表明随着Ti含量增加化合物的居里温度降低,热滞变大,最大等温磁熵变减小。  相似文献   

2.
用熔体快淬法制备La1-xCex(Fe0.92Co0.08)11.4Si1.6(x=0,0.1,0.3,0.5)合金,通过X射线衍射和磁性能测量研究了退火态(1000℃、3 h)La1-xCex(Fe0.92Co0.08)11.4Si1.6的相组成和磁熵变。结果表明,以Ce部分替代La使La1-xCex(Fe0.92Co0.08)11.4Si1.6合金更易形成NaZn13型立方结构相、α-Fe相的含量显著减少,居里温度有一定程度地降低,磁熵变有较大幅度的增加。但是,当Ce替代量增加到0.5时出现杂相,磁熵变反而降低。La1-xCex(Fe0.92Co0.08)11.4Si1.6(x=0.3)合金在室温附近的最大等温磁熵变比纯Gd的还大,有望成为低成本、高性能的室温磁致冷材料。  相似文献   

3.
采用单辊快淬法制备Fe81-xCoxZr7Nb2B10(x = 2, 4, 6) 系非晶合金,并对该系非晶合金进行热处理。利用X射线衍射和振动样品磁强计研究FeCoZrNbB 合金系的晶化过程和磁性能。结果表明,Fe81-xCoxZr7Nb2B10(x = 2, 4, 6) 系合金在快淬速率为30 m/s时完全形成非晶。Fe79Co2Zr7Nb2B10合金的晶化过程为非晶→非晶+α-Fe→α-Fe + Fe3Zr + Fe2Nb0.4Zr0.6;Fe77Co4Zr7Nb2B10与Fe75Co6Zr7Nb2B10合金的晶化过程相同为非晶→非晶+α-Fe→ α-Fe + Fe3Zr →α-Fe + Fe3Zr + Fe2Nb0.4Zr0.6。Co 含量的增加抑制了退火后α-Fe晶相的形核,并促使Fe 3Zr化合物更易析出。Fe81-xCoxZr7Nb2B10(x = 2, 4, 6) 合金的比饱和磁化强度( Ms) 和矫顽力 ( Hc) 随退火温度的变化趋势相同。530℃ 之前退火,随退火温度的升高M s增加并不明显 ; 530℃之后退火,Ms迅速上升。530℃ 退火,Hc达到最小值;高于530℃ 退火,Hc随退火温度的升高而增加。   相似文献   

4.
用溶胶-凝胶法制备了La0.7-xNdxBa0.3MnO3(x=0,0.05,0.10,0.15,0.20,0.25)多晶纳米颗粒,用XRD分析其相结构并计算晶格常数,用VSM测量样品的磁性能并计算磁熵变和居里温度.结果表明,La-Ba-Mn-O系列中适当的Nd掺杂可调整材料的居里温度至室温附近并有效提高其磁熵变.文中对于Nd掺杂对居里温度和磁熵变影响的机理进行了定性的分析.  相似文献   

5.
郑强  付浩  王明轩 《功能材料》2012,(2):247-249
电弧炉熔炼的Gd2Co2Al合金在铸态条件下即为W2Co2B型单相正交结构。变温磁化曲线表明,当外加磁场为0.01和0.1T时,可以在40、77和215K附近观察到磁相变;而外加磁场增加到1T以上时,40和215K温度处的磁相变消失。在排除第二相相变的前提下,推测215和77K处的相变对应Gd2Co2Al合金中Co和Gd次晶格的磁有序相变,而40K处的相变可能是由于自旋重取向产生。在0~5T磁场变化下,Gd2Co2Al合金在77K附近的最大磁熵变(-ΔSMmax)为10.7J/kgK,相对制冷量的值为5.4×102J/kg,表明该合金适合作为工作在液氮温区附近的磁致冷工质。  相似文献   

6.
将Landau二级相变理论应用于二级磁相变材料的磁热效应,建立了磁熵变与磁场的直接关系表达的理论模型。以La0.7Sr0.3MnO3为例,在居里温度附近利用该理论模型和麦克斯韦关系式计算了磁熵变ΔSM,并进行了对比。结果表明基于Landau理论的计算结果与利用传统方法的计算结果相符合。而根据Landau平均场理论,二级磁相变材料中居里温度TC和磁熵变ΔSM最大的温度Tpeak不一致,但在居里温度附近ΔSM与磁场的相关性ΔSM=kH^n表达的指数为n=2/3。  相似文献   

7.
高性能低温低场磁热材料在气体液化等领域具有重要的应用前景.本团队通过真空电弧熔炼的方式成功合成了一系列多晶Er1-xYxCr2Si2(0≤x≤0.8)样品,这些材料表现出巨大的低场磁热效应.其中Cr含量为0.1的样品显示出最好的低场磁热性能以及接近2 K的合适的工作温区.更重要的是,在0-1 T的磁场变化下,该样品的最大磁熵变峰值以及最大绝热温变峰值分别高达19.2 J kg-1 K-1和4.3 K.其磁熵变峰值为目前已报道的20 K以下温区合金类磁热材料的最大值.通过Arrott曲线,平均场理论以及约化磁熵变曲线等手段,证明了磁相变特征为二级相变.物理机理分析表明,10%的Y替代导致高达15.9%的磁熵变峰值增强的原因在于替代样品所具有的大饱和磁化强度以及小饱和磁场.  相似文献   

8.
高梦琦  吴克楠  李强  霍军涛  穆保霞  马旭 《功能材料》2022,53(3):3158-3161+3166
通过Fluxing提纯处理和J-Quenching快速凝固技术相结合的方法成功制备出临界尺寸为1.3 mm的Fe71Mo9P13C7块体非晶态合金棒,并对其热力学性能、磁性能和磁热性能进行了研究。结果显示,Fe71Mo9P13C7块体非晶态合金的饱和磁化强度为0.55 T;在5 T外加磁场下的最大等温磁熵变值为2.57 J/(kg·K),制冷能力为305.57 J kg。重要的是Fe71Mo9P13C7块体非晶态合金的居里温度为355 K,接近室温,因此有望成为室温磁制冷工质的候选材料。  相似文献   

9.
通过熔体快淬制备了Gd59Co41、Gd56Co44非晶条带,并对Gd56Co44非晶条带进行588K、10min的晶化处理。利用X射线衍射仪(XRD)分析了合金的结构,通过综合物性测量系统(PPMS)研究了合金的磁性及磁热效应。结果表明,Gd59Co41和Gd56Co44非晶条带的初始晶化温度分别为523和544K;Gd56Co44非晶条带晶化处理后获得了Ho4Co3型六方单相。非晶态和晶态合金在居里温度附近都发生铁磁到顺磁的二级相变。随着Gd/Co比例的降低,Gd59Co41和Gd56Co44非晶合金的居里温度(TC)从198K提高到217K;晶化处理后Gd56Co44合金的居里温度为218K,与非晶态合金相比变化甚微。在ΔH=5T时,Gd59Co41和Gd56Co44非晶合金的最大磁熵变(-ΔSM)和制冷能力(RC)分别为7.7J/kg·K、525J/kg和6.6J/kg·K、544J/kg;而Gd56Co44晶态合金的最大磁熵变(-ΔSM)和制冷能力(RC)分别为5.6J/kg·K和528J/kg。大的磁熵变和制冷能力,几乎可以忽略的矫顽力和热滞/磁滞效应,表明Gd-Co二元非晶和晶态系列合金是200K温区附近一类具有潜在应用价值的磁制冷工质。  相似文献   

10.
用溶胶-凝胶法制备系列样品La0.8-xNdxNa0.2MnO3(x=0.00,0.05,0.10,0.15和0.20)钙钛矿锰氧化物.研究温度范围在240~340 K、外磁场0~1T下该系列样品的居里温度和磁熵变.发现样品的居里温度TC随x增加而减小,而且x=0.20、温度为295K时,最大磁熵变△SM为1.68 J/kg·K.实验结果表明钙钛矿锰氧化物La0.8-xNdxNa0.2MnO3有可能作为室温下的磁致冷材料的候选者.  相似文献   

11.
LaFe11.4Si1.6By(y=0、0.1、0.2、0.3、0.4和0.5)系列化合物,通过添加少量的B后,可以明显的缩短退火时间。晶格常数随着B含量的增加先减小后增大。该系列化合物的热滞很小,B的添加对其热滞几乎没有影响。在外加磁场变化为0~1.5T时,等温磁熵变的最大值从19.1J/(kg.K)(y=0)逐渐下降到7.1J/(kg.K)(y=0.5)。该系列化合物在B含量较低时,处于居里温度(Tc)之上,存在比较明显的场致变磁转变特性。随着B含量增加到0.5时,场致变磁转变特性明显减弱。  相似文献   

12.
采用高温固相反应法制备双钙钛矿氧化物Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)系列陶瓷样品,研究了Tb的掺杂量对Pr2CoMnO6样品的居里温度、磁熵变以及磁相变的影响。结果表明:系列样品Pr(2-x)TbxCoMnO6(x=0,0.05,0.1,0.15)的空间点群为单斜晶系P21/n,具有良好的单相性;该组样品均有两个磁转变点(TC1TC2);随着Tb掺杂量的增加TC1TC2均降低下降;在测量温区内,随着温度的降低4个样品均先后经历顺磁态、顺磁-铁磁共存态;该组样品在7 T外加磁场中的最大磁熵变值ΔSM分别为-1.862、-1.779、-1.768和-1.766 J/(kg·K)。掺杂Tb元素使最大磁熵变值变小,但是拓宽了半高宽温区。结合RCP值可以判断,Pr1.9Tb0.1CoMnO6比其他三个样品更具有作为高温区磁制冷材料的潜能;根据对Arrott曲线、重标定曲线以及Loop曲线的分析,该组样品在此阶段经历了一级相变。  相似文献   

13.
Er2-xRxFe17(R=Pr,Ce)化合物的结构与磁熵变研究   总被引:1,自引:0,他引:1  
在氩保护气氛中用熔炼法制备了Er2-xRxFe17(R=Pr,Ce)系列合金,通过粉末X射线衍射和SQUID磁强计研究了样品的结构和磁熵变.结果表明,轻稀土Pr和Ce的掺入没有明显改变Er2Fe17化合物的相结构,但改变了Er次晶格与Fe次晶格之间的耦合系数,使仍为六方Th2Ni17型结构的Er2-xRxFe17化合物的居里温度可通过成分微调使其处在室温附近,Er2-xRxFe17化合物的λ形(-△SM)-T曲线表明其在居里点附近发生的相变属于二级相变,Er2-xRxFe17化合物有较大的磁熵变,且致冷温区较宽,是一类有很大应用潜力的室温磁致冷材料.  相似文献   

14.
用溶胶-凝胶法制备了空位掺杂的La0.64Ca0.28Sr0.02MnO3材料样品,从结构,磁化曲线,磁相变等方面研究分析其具有大磁熵变的原因。在外加磁场1 T时,该样品磁熵变|ΔSM|达到3.01 J/(kg.K),居里温度TC为264 K。该样品低磁场下在室温附近有较强的制冷力,可作为良好的室温磁制冷材料。  相似文献   

15.
基于磁性材料相变过程中伴随的磁热效应而发展起来的磁制冷技术因其绿色环保和高效节能等优点而被广泛关注.高性能磁制冷工质材料的探索一直是本领域的研究热点也是难点之一.本文中,我们通过实验研究结合第一性原理计算,对Gd Fe2Si2化合物的晶体结构、磁性、磁相变以及低温磁热效应进行了系统研究,结果表明Gd Fe2Si2化合物基态为反铁磁且具有大的低温可逆磁热效应.在0–7 T的磁场变化下,其磁制冷参数包括等温磁熵变最大值和制冷能力分别高达30.01 J kg-1K-1和328.45 J kg-1.这些磁制冷参数优于大多数目前已报道的同温区高性能稀土基磁制冷材料,表明反铁磁Gd Fe2Si2化合物在低温磁制冷领域同样具有潜在的应用前景.  相似文献   

16.
通过X射线衍射和磁性测量等手段对所制备的金属间化合物La0.8Pr0.2Fe13-xSix(x=1.8,2.0)的结构和磁性进行了研究.结果表明,在1373K温度下,经过5天退火所得的金属间化合物La0.8Pr0.2Fe13-xSix(x=1.8,2.0)晶体均为单相立方NaZn13型结构;另当Si含量由1.8变为2.0时,引发了晶格体积收缩,居里点升高.当x=1.8时,该化合物在居里温度Tc为210K处具有大的磁熵变|ΔSM|,在0~1.5T的磁场下|ΔSM|max为10.43J/(kg·K).当x=2.0时,该化合物在居里温度Tc为226K处具有最大的磁熵变|ΔSM|, 在0~1.5T的磁场下|ΔSM|max为5.23J/(kg·K).大磁熵变来源于Tc处磁化强度的陡峭变化和Tc以上磁场诱发的巡游电子变磁性转变.  相似文献   

17.
研究了Mn替代Fe对多晶Tb0.4Dy0.6Fe1.91合金棒材性能的影响.分析了Tb0.4Dy0.6(Fe1-xMnx)1.91(x=0,0.05,0.10,0.15)多晶棒材的结构、晶格常数、居里温度和磁致伸缩性能,发现Mn替代Fe后,样品仍然为MgCu2型Laves相结构.随着Mn含量从0增加到0.15,样品的晶格常数从7.335A增加到7.347A,居里温度从668K降低到526K.Mn原子的替代通过改变材料的交换相互作用、总磁矩和易磁化方向影响材料的磁致伸缩性能.实验结果显示,Tb0.4Dy0.6(Fe1-xMnx)1.91样品在石=0.10时综合性能最好.  相似文献   

18.
杜金超  郝宏波  李华  焦佩英  龚沛 《功能材料》2023,(12):12177-12182
以Fe81Ga15.5Al3.5合金为基体向其中掺杂Ce元素,研究(Fe81Ga15.5Al3.5)100-xCex(x=0, 0.2, 0.4, 0.6, 0.8, 1.0)合金微观结构和磁性能的变化。结果显示:Fe81Ga15.5Al3.5合金的晶粒形状为柱状晶,加入Ce元素后,晶粒形状变为树枝晶。少量Ce元素加入时,(Fe81Ga15.5Al3.5)100-xCex合金的相结构仍以A2相为主;当x>0.8%时,合金的相结构由A2相和CeCa2相组成。Ce元素的加入可以改变合金[100]晶向的取向性;合金的晶格常数随着Ce含量的增加而逐渐减小。在扫描电镜下,可以观察到Fe81Ga  相似文献   

19.
报道了CoCr2O4纳米颗粒体系的磁卡效应.该体系在其居里温度附近磁化强度有一个突然的下降(△T≈4 K),预示可能存在一级磁相变.低场(1 T)测量得到该材料的磁熵变为0.43 J/K·kg.Arrott曲线证明,在居里温度附近存在一级磁相变.  相似文献   

20.
利用电弧熔炼技术得到TmNiIn稀土金属间化合物,研究其磁性和磁热效应。研究表明TmNiIn金属间化合物的晶体结构是ZrNiAl型的六方密堆积结构,是一种具有可逆磁热效应的材料。TmNiIn是反铁磁材料,其相变温度为3.5K,在液氦温度(4.2K)附近。根据等温磁化曲线并利用麦克斯韦关系式计算可以得到磁熵变与温度的关系。当磁场变化为5T时,最大磁熵变和制冷能力分别为12.1J/kg·K和138J/kg。当磁场变化为2T时,最大磁熵变5.3J/kg·K,同时在TmNiIn金属间化合物中未观察到热滞现象和磁滞损耗。大的可逆磁致热效应表明TmNiIn是一种在低温磁制冷技术中有应用前景的材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号