首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚乙烯醇/木薯淀粉复合膜的制备与性能   总被引:1,自引:0,他引:1  
将聚乙烯醇(PVA)与木薯淀粉混合,采用流延法制备PVA/木薯淀粉复合膜,并对其进行了结构表征和性能测试,研究PVA和木薯淀粉不同配比对于复合膜结构和性能的影响。结果表明:PVA和木薯淀粉相容性较好,淀粉的加入提高了PVA的热稳定性,PVA与淀粉的配比对复合膜的综合性能产生重要影响。随着体系中淀粉含量增加,复合膜的拉伸强度和断裂伸长率均先提高后降低,透光率降低,吸水率先降低后升高。当PVA和木薯淀粉配比为70:30时复合膜综合性能最佳,拉伸强度、断裂伸长率、透光率和吸水率分别达到55.65 MPa、337.10%、86.90%和109.52%,优于纯PVA膜。  相似文献   

2.
《塑料》2016,(6)
采用溶液成膜法制备了增塑改性的淀粉/聚乙烯醇(PVA)复合薄膜,并研究了硝酸钙,甘油和硝酸钙/甘油复合增塑剂对淀粉/聚乙烯醇复合薄膜的增塑改性效果。采用傅里叶变化红外光谱研究了硝酸钙,甘油和硝酸钙/甘油复合增塑剂和淀粉/PVA之间的相互作用,采用X射线衍射,热重分析和拉伸测试研究了不同改性剂对淀粉/PVA的结晶性能,热性能和机械性能的影响。研究结果表明:硝酸钙对淀粉/PVA有很强的结晶破坏效果。采用15%硝酸钙和15%甘油复合改性后,淀粉/PVA的拉伸强度和断裂伸长率分别达到17 MPa和399%。  相似文献   

3.
《广州化工》2021,49(12)
采用单因素实验研究了玉米淀粉与PVA质量比、增塑剂添加量、交联剂添加量对复合膜性能的影响,并通过正交实验进行优化,确定了制备复合膜的较优工艺条件。结果表明,在交联反应温度70℃、交联反应时间30 min、干燥时间3 h、干燥温度80℃、玉米淀粉:PVA质量比6:4、甘油添加量15%,氯化钙添加量2%时,复合膜的各项性能较佳。在最佳工艺条件下制备的复合膜的各项性能分别为拉伸强度23.66 MPa、断裂伸长率101.4%、透光率25.5%、吸水率41.9%。  相似文献   

4.
制备了5种聚乙烯醇(PVA)/木醋液/PVA复合膜,并分别对其力学性能和透光率进行表征。研究结果表明PVA/贮藏桶上部白桦精制木醋液/PVA复合膜的平均厚度较小(0.67 mm);PVA/贮藏桶上部白桦精制木醋液/PVA复合膜的拉伸强度较大(82.47 Mpa);PVA/贮藏桶上部白桦精制木醋液/PVA复合膜的断裂伸长率较小(17.5%)。PVA/贮藏桶上部白桦精制木醋液/PVA复合膜的透光率较好。PVA/木醋液/PVA复合膜在木醋液抑菌膜领域具有开发价值。  相似文献   

5.
田华  杨彪  许国志  林毅 《中国塑料》2009,23(2):51-53
以淀粉、PVA、水、甘油和硼砂为原料制备了淀粉基全降解材料,对其力学性能进行了研究。结果表明,以30份水做增塑剂,加入25份PVA时,材料的拉伸强度和断裂伸长率分别从纯淀粉的25.80MPa和1.11%提高到31.78MPa和6.24%,同时应力-应变曲线表明,材料从脆性断裂转变为无屈服点的韧性断裂,说明PVA增韧作用明显;硼砂可以使PVA和淀粉发生交联,制得材料的拉伸强度可达43.37MPa,但材料韧性较差;甘油的加入虽可以使材料的断裂伸长率提高,但拉伸强度明显降低;同时加入硼砂和甘油,材料的强度和韧性同时得到改善,拉伸强度和断裂伸长率分别提高到36.26MPa和11.71%。  相似文献   

6.
为了改善聚乙烯醇(PVA)膜的机械性能,选用玉米淀粉为原材料,50℃条件下以过硫酸铵和尿素为引发剂,同时加入丙烯酰胺对淀粉进行接枝改性,制备得到丙烯酰胺改性的玉米淀粉/PVA复合膜。其中,优化改性淀粉的接枝率确定最佳合成条件为淀粉/丙烯酰胺的质量比为3∶7、引发剂过硫酸铵占单体总质量的0.5%、尿素占单体总质量的0.5%。进一步利用优化的改性淀粉为改性剂,制备了系列改性玉米淀粉/PVA复合膜。采用傅里叶红外光谱、扫描电子显微镜(SEM)对复合膜的组成与结构进行表征,同时测定复合膜的机械性能、耐水性、耐热性等物化特性,结果表明30%ST-0.50%APSU改性淀粉的单体转化率为95.0%,接枝率为85.2%。 30%ST-0.50%APSU/PVA复合膜的耐热性能轻微下降,但断裂伸长率提高了256%,耐水性能提高了43.1%。  相似文献   

7.
采用球磨法制备的纤维素纳米晶(CNC)及市售纳米ZnO对聚乙烯醇(PVA)进行改性,改善了PVA膜的力学性能,并且,赋予其抗菌性,测试复合膜的力学性能、水蒸气透过性能及抗菌性能。结果表明,加入CNC后,提高了PVA膜的力学性能和阻湿性能,加入纳米ZnO后,复合膜对金黄色葡萄球菌具有一定的抗菌性能,并且,能进一步提高复合膜的拉伸强度,但是,降低了复合膜的阻湿性能。当CNC的添加量为3%、纳米ZnO∶CNC=2∶1(摩尔比)时,复合膜综合性能较好,拉伸强度为73.7 MPa,与纯PVA膜相比,提高了77.2%;断裂伸长率为3.8%,与纯PVA膜相比,提高了46.1%;水蒸气透过系数为3.44×10-13 g·cm/(cm2·s·Pa),与纯PVA膜相比,提高了11.7%。  相似文献   

8.
选用壳聚糖(CH)和木薯(CA)淀粉为基本成膜材料,甘油为增塑剂,改性纳米SiO_2(NS)为增强剂,采用流延法制备壳聚糖-淀粉基复合膜,探究壳聚糖与木薯淀粉比例、甘油含量以及改性纳米SiO_2含量对复合膜性能的影响。通过正交试验采用极差分析并结合方差分析确定了纳米SiO_2/壳聚糖/淀粉复合膜的较优工艺条件。结果表明,壳聚糖与淀粉质量比6∶4,甘油含量35%,改性纳米SiO_2含量2%。在此条件下,复合膜的各项性能分别为:拉伸强度32.43 MPa,断裂伸长率38.98%,透光度19.96,水蒸气透过率10.53×10~(-11)/(m·s·Pa)。该复合膜与不添加改性纳米SiO_2的复合膜相比其力学强度增加了158.41%,水蒸气透过率减小了13.48%,复合膜力学强度和耐水性能有明显的改善。  相似文献   

9.
杨连利 《现代化工》2011,(3):55-57,59
采用水溶液法制备复合膜聚乙烯醇-海藻酸钠/钠化累托石,用红外光谱仪、X射线衍射仪分析了复合膜的分子结构,通过透射电镜及原子力显微镜观察了复合膜的相貌结构,研究了复合膜的力学性能及热性能。结果表明,聚乙烯醇(PVA)与海藻酸钠(SA)、钠化累托石(Na+REC)形成插层纳米复合材料,复合材料具有较高的拉伸强度、断裂伸长率及热稳定性。PVA10-SA/Na+REC2与SA/Na+REC2复合膜相比,拉伸强度提高42.2%,断裂伸长率提高35.4%,在36~230℃失重率降低3.48%。  相似文献   

10.
以木薯淀粉和聚乙烯醇作为基本成膜物质,添加表面活性剂十二烷基磺酸钠,通过流延成膜法制备聚乙烯醇/淀粉复合膜。在单因素试验基础上,研究木薯淀粉、聚乙烯醇、表面活性剂十二烷基磺酸钠用量,成型加工温度和成型加工时间对聚乙烯醇/淀粉复合膜力学性能的影响,并通过正交试验对木薯淀粉、十二烷基磺酸钠用量和成型加工时间3个因素进行优化,确定聚乙烯醇/淀粉复合膜性能的较优工艺条件。同时,对新制备的复合膜土埋降解和鲜花保鲜性能进行了研究。结果表明:当聚乙烯醇用量为1 g,木薯淀粉用量为0.7 g,十二烷基磺酸钠用量为0.5 g,成型加工温度为80℃,成型加工时间为65 min时,制备的聚乙烯醇/淀粉复合膜力学性能较优,断裂伸长率高达262.58%、拉伸强度24.63 MPa。获得的新复合膜具有可降解性。聚乙烯醇/淀粉复合膜储藏80 h以后无霉菌生长迹象,对鲜花有一定保鲜效果。  相似文献   

11.
聚乙烯醇/淀粉薄膜的力学性能及结晶行为   总被引:1,自引:0,他引:1  
通过熔融共混挤出的方法,制备了聚乙烯醇(PVA)/淀粉薄膜,研究了淀粉加入量对PVA/淀粉薄膜力学性能的影响。采用差示扫描量热法研究了PVA薄膜和PVA/淀粉薄膜的结晶行为及非等温结晶动力学。结果表明:随着淀粉含量的增加.PVM淀粉薄膜的拉伸强度和断裂伸长率下降。在淀粉质量分数为25%时,薄膜的拉伸强度为17.05 MPa.断裂伸长率为425.00%.仍能达到包装薄膜对力学性能的要求。PVA/淀粉薄膜熔融温度和结晶温度均随着淀粉加入量的增加向低温方向移动;在相同的冷却速率下,共混薄膜的结晶速率低于PVA薄膜,同时结晶度也下降.导致力学性能下降。  相似文献   

12.
耐水性聚乙烯醇薄膜的制备及性能   总被引:1,自引:0,他引:1  
通过对聚乙烯醇薄膜进行交联改性,提高耐水性,确定涂膜液的配方及工艺条件,测试改性PVA膜的性质,如吸水率、结晶度、断裂伸长率、拉伸强度.得到一种耐水性与纯PVA膜相比明显提高的改性PVA膜.最后讨论增塑剂加入对改性膜断裂伸长率和拉伸强度的影响.  相似文献   

13.
以甘蔗渣为原料,采用硫酸水解法制备甘蔗渣纳米纤维素。以氧化淀粉(OS)和聚乙烯醇(PVA)为基材,添加甘蔗渣纳米纤维素、增塑剂甘油、交联剂乙二醛制备复合膜。以拉伸强度、断裂伸长率、水蒸气透过率和水溶率为测量指标,研究了甘油、乙二醛、纳米纤维添加量对膜特性的影响。结果表明,随着甘油含量增大,复合膜的水溶率和水蒸气透过率逐渐增大,拉伸强度逐渐降低;添加乙二醛能够提高复合膜的耐水性能,添加量为0. 15 m L/g时,拉伸强度达到最大值(6. 25±0. 16) MPa;适当添加甘蔗渣纳米纤维素增强复合膜的机械性能和耐水性能,当纳米纤维含量为20%时,复合膜的水蒸气透过率达到最小值,为(5. 349±0. 056)×10~(-7)g/(m·h·Pa)。  相似文献   

14.
以海藻酸钠为基材,纤维素纳米晶(CNC)为增强增韧剂,以山梨酸钾为防腐保鲜剂,采用流延法制备海藻酸钠/CNC/山梨酸钾复合膜。研究CNC、山梨酸钾的加入对海藻酸钠膜光学性能、力学性能、水蒸气阻隔性能等的影响。结果表明:随着CNC含量的增加,复合膜的透光率先增加后降低;添加山梨酸钾后,复合膜的透光率逐渐下降。CNC的加入使复合膜的拉伸强度和断裂伸长率均先提高后降低,水蒸气阻隔性能先降低后升高。随着山梨酸钾的添加,复合膜的拉伸强度逐渐降低,断裂伸长率先降低后增加,水蒸气阻隔性能先升高后降低。当CNC含量为5%、山梨酸钾含量为3%,复合膜的拉伸强度为120.78 MPa,断裂伸长率为4.38%,水蒸气透过系数为7.62×10-13 g·cm/(cm2·s·Pa),与纯海藻酸钠膜相比,分别提高了21.66%、27.33%和17.59%,复合膜综合性能最佳。  相似文献   

15.
木质素/PVA复合膜的性能   总被引:2,自引:1,他引:1  
陶杨  罗学刚 《化工进展》2007,26(3):400-404
以可再生资源木质素磺酸钙和聚乙烯醇(PVA)为基料,制备力学强度及耐水性能良好的木质素/PVA复合膜。采用5因素二次正交旋转组合设计研究了木质素磺酸钙、PVA、甲醛、尿素、硼砂对膜拉伸强度、断裂伸长率和吸水率的影响,并得到相应二次回归模型。分析表明:5个因素的一次项、二次项及交互项对膜拉伸强度、断裂伸长率和吸水率均有不同程度的影响。当原料配比为木质素磺酸钙7 g、PVA 14 g、甲醛10 g、尿素7 g、硼砂2.5 g时,可以得到拉伸性能和耐水性优良的木质素/PVA复合膜。  相似文献   

16.
添加物对酯化淀粉薄膜力学性能的影响   总被引:1,自引:0,他引:1  
研究甘油、PVA、玻纤和偶联剂对酯化淀粉薄膜力学性能的影响.增加甘油含量使酯化淀粉薄膜的断裂伸长率增大,而拉伸强度减小;当偶联剂和玻璃纤维添加量分别为酯化淀粉3%、7%时,薄膜的拉伸强度最大为25 MPa,断裂伸长率下降;随着PVA含量的增加,薄膜拉伸强度和断裂伸长率都不断上升.研究结果表明:当PVA含量为30%,甘油含量为10%,偶联剂含量为3%,玻璃纤维含量为7%时,其力学性能可以达到所需要求.  相似文献   

17.
采用流延成膜法制备了以尿素/甲酰胺为复配增塑剂改性的聚乙烯醇(PVA)改性薄膜。采用FTIR研究了复配增塑剂尿素/甲酰胺和PVA之间的相互作用,采用XRD、DSC、TGA和拉伸性能测定对改性后的PVA膜性能进行了测试表征。结果表明,尿素/甲酰胺能与PVA形成氢键作用,破坏PVA的结晶结构,降低PVA膜的结晶度。尿素/甲酰胺的加入降低了PVA的熔点,提高了PVA的热分解温度。改性后的PVA膜的拉伸强度降低,断裂伸长率提高。  相似文献   

18.
以聚甘油(PG)为增塑剂,采用溶液流延法制备了PG增塑改性聚乙烯醇(PVA)复合薄膜。通过红外光谱分析(FTIR)、X射线衍射分析(XRD)、差示扫描量热分析(DSC)、热失重分析(TGA)、拉伸测试等考察了PVA/PG复合膜的氢键作用、结晶性能、热性能、力学性能。结果表明:PG增塑剂能有效破坏PVA自身的氢键,在PVA热分解温度基本保持不变的前提下降低材料的熔融温度和结晶度,从而扩展PVA的热塑加工温度窗口。随着PG用量的增加,PVA/PG复合薄膜的拉伸强度逐渐降低,而断裂伸长率明显提高。  相似文献   

19.
采用玉米淀粉、聚乙烯醇、水及少量甘油为原料,在90~100℃的条件下,直接注塑成型,制备了淀粉/聚乙烯醇复合材料。采用扫描电子显微镜、热重分析仪、万能试验机、冲击试验机及土壤掩埋法,研究了淀粉/聚乙烯醇复合材料的微观形貌、力学性能及降解性能。结果表明,随着聚乙烯醇含量的增加,复合材料的断裂伸长率和冲击强度逐渐上升,当聚乙烯醇含量增至20%时,断裂伸长率和冲击强度分别达到50. 1%、27. 3 k J/m2;降解速率逐渐下降,其值在聚乙烯醇含量增至20%时,下降至39. 0%;拉伸强度呈先上升后下降的趋势,当聚乙烯醇含量为10%时,达到最大值15. 0 MPa。  相似文献   

20.
周玉惠 《广东化工》2013,(13):12-13
以氯化锌为原料制备纳米氧化锌(ZnO),采用化学交联法法制备ZnO/聚乙烯醇(PVA)复合水凝胶,研究ZnO加入量对复合水凝胶拉伸强度、断裂伸长率以及溶胀性能的影响。实验结果表明:ZnO含量为0.1%时,复合水凝胶的拉伸强度和断裂伸长率最大,而ZnO含量为0.4%时,复合水凝胶的溶胀率最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号