首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
DNA double-strand breaks (DSBs) are the most perilous and harmful type of DNA damage and can cause tumorigenesis or cell death if left repaired with an error or unrepaired. RadD, a member of the SF2 family, is a recently discovered DNA repair protein involved in the repair of DSBs after radiation or chemical damage. However, the function of RadD in DNA repair remains unclear. Here, we determined the crystal structures of RadD/ATPγS and RadD/ATP complexes and revealed the novel mechanism of RadD binding to DNA and ATP hydrolysis with biochemical data. In the RadD catalytic center, the Gly34 and Gly36 on the P-loop are key residues for ATP binding besides the conserved amino acids Lys37 and Arg343 in the SF2 family. If any of them mutate, then RadD loses ATPase activity. Asp117 polarizes the attacking water molecule, which then starts a nucleophilic reaction toward γ-phosphate, forming the transition state. Lys68 acts as a pocket switch to regulate substrate entry and product release. We revealed that the C-terminal peptide of single-stranded DNA-binding protein (SSB) binds the RadD C-terminal domain (CTD) and promotes the RadD ATPase activity. Our mutagenesis studies confirmed that the residues Arg428 on the zinc finger domain (ZFD) and Lys488 on the CTD of RadD are the key sites for binding branched DNA. Using the Coot software combined with molecular docking, we propose a RadD-binding DNA model for the DNA damage repair process.  相似文献   

2.
Certain cancers exhibit upregulation of DNA interstrand crosslink repair pathways, which contributes to resistance to crosslinking chemotherapy drugs and poor prognoses. Inhibition of enzymes implicated in interstrand crosslink repair is therefore a promising strategy for improving the efficacy of cancer treatment. One such target enzyme is SNM1A, a zinc co-ordinating 5’–3’ exonuclease. Previous studies have demonstrated the feasibility of inhibiting SNM1A using modified nucleosides appended with zinc-binding groups. In this work, we sought to develop more effective SNM1A inhibitors by exploiting interactions with the phosphate-binding pocket adjacent to the enzyme's active site, in addition to the catalytic zinc ions. A series of nucleoside derivatives bearing phosphate moieties at the 5’-position, as well as zinc-binding groups at the 3’-position, were prepared and tested in gel-electrophoresis and real-time fluorescence assays. As well as investigating novel zinc-binding groups, we found that incorporation of a 5’-phosphate dramatically increased the potency of the inhibitors.  相似文献   

3.
    
A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.  相似文献   

4.
    
The rescue of stalled DNA replication forks is essential for cell viability. Impeded but still intact forks can be rescued by atypical DNA helicases in a reaction known as fork regression. This reaction has been studied at the single-molecule level using the Escherichia coli DNA helicase RecG and, separately, using the eukaryotic SMARCAL1 enzyme. Both nanomachines possess the necessary activities to regress forks: they simultaneously couple DNA unwinding to duplex rewinding and the displacement of bound proteins. Furthermore, they can regress a fork into a Holliday junction structure, the central intermediate of many fork regression models. However, there are key differences between these two enzymes. RecG is monomeric and unidirectional, catalyzing an efficient and processive fork regression reaction and, in the process, generating a significant amount of force that is used to displace the tightly-bound E. coli SSB protein. In contrast, the inefficient SMARCAL1 is not unidirectional, displays limited processivity, and likely uses fork rewinding to facilitate RPA displacement. Like many other eukaryotic enzymes, SMARCAL1 may require additional factors and/or post-translational modifications to enhance its catalytic activity, whereas RecG can drive fork regression on its own.  相似文献   

5.
    
Pif1 helicases are a multifunctional family of DNA helicases that are important for many aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier, tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination, Okazaki fragment maturation, and break-induced replication. This review highlights many of the roles and regulations of Pif1 at the replication fork that promote cellular health and viability.  相似文献   

6.
本文介绍了紫外线对皮肤伤害的基本原理,对DNA光修复酶在抵抗紫外线损伤中的重要功效进行了综述,并介绍了其作为化妆品功能成分开发的现状,预测其作为基因修复型抗日晒产品的广阔应用前景。  相似文献   

7.
8.
    
DNA helicase and polymerase work cooperatively at the replication fork to perform leading-strand DNA synthesis. It was believed that the helicase migrates to the forefront of the replication fork where it unwinds the duplex to provide templates for DNA polymerases. However, the molecular basis of the helicase-polymerase coupling is not fully understood. The recently elucidated T7 replisome structure suggests that the helicase and polymerase sandwich parental DNA and each enzyme pulls a daughter strand in opposite directions. Interestingly, the T7 polymerase, but not the helicase, carries the parental DNA with a positively charged cleft and stacks at the fork opening using a β-hairpin loop. Here, we created and characterized T7 polymerases each with a perturbed β-hairpin loop and positively charged cleft. Mutations on both structural elements significantly reduced the strand-displacement synthesis by T7 polymerase but had only a minor effect on DNA synthesis performed against a linear DNA substrate. Moreover, the aforementioned mutations eliminated synergistic helicase-polymerase binding and unwinding at the DNA fork and processive fork progressions. Thus, our data suggested that T7 polymerase plays a dominant role in helicase-polymerase coupling and replisome progression.  相似文献   

9.
10.
DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.  相似文献   

11.
    
CC-115 is a dual inhibitor of the mechanistic target of rapamycin (mTOR) kinase and the DNA-dependent protein kinase (DNA-PK) that is currently being studied in phase I/II clinical trials. DNA-PK is essential for the repair of DNA-double strand breaks (DSB). Radiotherapy is frequently used in the palliative treatment of metastatic melanoma patients and induces DSBs. Melanoma cell lines and healthy-donor skin fibroblast cell lines were treated with CC-115 and ionizing irradiation (IR). Apoptosis, necrosis, and cell cycle distribution were analyzed. Colony forming assays were conducted to study radiosensitizing effects. Immunofluorescence microscopy was performed to determine the activity of homologous recombination (HR). In most of the malign cell lines, an increasing concentration of CC-115 resulted in increased cell death. Furthermore, strong cytotoxic effects were only observed in malignant cell lines. Regarding clonogenicity, all cell lines displayed decreased survival fractions during combined inhibitor and IR treatment and supra-additive effects of the combination were observable in 5 out of 9 melanoma cell lines. CC-115 showed radiosensitizing potential in 7 out of 9 melanoma cell lines, but not in healthy skin fibroblasts. Based on our data CC-115 treatment could be a promising approach for patients with metastatic melanoma, particularly in the combination with radiotherapy.  相似文献   

12.
合成了三角架配体L,用红外光谱、核磁共振氢谱、X单晶衍射等手段对配体进行了鉴定。在此基础上,用高氯酸镁与其合成镁的金属络合物,通过核磁共振氢谱、红外光谱等手段对配合物的结构进行了表征。最后,通过电泳技术研究了此配合物与pBR322DNA的作用,并对机理进行了初步探讨。电泳结果表明:配合物在生理条件下(pH=7.0,37℃)与pBR322DNA反应2h,能够断裂DNA,有的甚至断裂成线性。本工作的意义在于:配合物在生理条件下,能迅速水解DNA,甚至出现了线性断裂产物。  相似文献   

13.
14.
    
In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable – based on the TFO sequence employed – to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.  相似文献   

15.
    
Airborne particulate matter with a diameter size of ≤10 µm (PM10) is a carcinogen that contains polycyclic aromatic hydrocarbons (PAH), which form PAH–DNA adducts. However, the way in which these adducts are managed by DNA repair pathways in cells exposed to PM10 has been partially described. We evaluated the effect of PM10 on nucleotide excision repair (NER) activity and on the levels of different proteins of this pathway that eliminate bulky DNA adducts. Our results showed that human lung epithelial cells (A549) exposed to 10 µg/cm2 of PM10 exhibited PAH–DNA adducts as well as an increase in RAD23 and XPD protein levels (first responders in NER). In addition, PM10 increased the levels of H4K20me2, a recruitment signal for XPA. However, we observed a decrease in total and phosphorylated XPA (Ser196) and an increase in phosphatase WIP1, aside from the absence of XPA–RPA complex, which participates in DNA-damage removal. Additionally, an NER activity assay demonstrated inhibition of the NER functionality in cells exposed to PM10, indicating that XPA alterations led to deficiencies in DNA repair. These results demonstrate that PM10 exposure induces an accumulation of DNA damage that is associated with NER inhibition, highlighting the role of PM10 as an important contributor to lung cancer.  相似文献   

16.
Imidazolone (dIz) is an abundant, highly mutagenic, and rather unstable DNA lesion that can cause dG-->dC transversion mutations. dIz is generated in DNA by a variety of oxidative processes such as type I photooxidation. Herein we report the synthesis of a carbocyclic nucleoside analogue of dIz and of DNA containing this stabilized lesion analogue. The carbocyclic modification protects this lesion analogue from anomerization. As the repair of the lesion analogue by DNA glycosylases is not possible, this analogue should allow cocrystallization studies together with wild-type repair enzymes. Characterization of the lesion analogue was performed by using spectroscopic methods and enzymatic digestion experiments of the oligonucleotides.  相似文献   

17.
An investigation of the precise interactions between damaged DNA and DNA repair enzymes is required in order to understand the lesion recognition step, which is one of the most fundamental processes in DNA repair. Most recently, photoaffinity labeling approaches have enabled the analysis of even transient protein‐DNA interactions. Here we report the synthesis and evaluation of oligonucleotides that contain two photoaffinity “catcher moieties” next to incorporated DNA lesions. With these DNA constructs it is possible to analyze the interactions between DNA lesions and the appropriate repair enzymes. The probes labeled the repair protein efficiently enough to enable subsequent protein analysis by mass spectrometry.  相似文献   

18.
The helicase from severe acute respiratory syndrome coronavirus (SARS‐CoV) possesses NTPase, duplex RNA/DNA‐unwinding and RNA‐capping activities that are essential for viral replication and proliferation. Here, we have isolated DNA aptamers against the SARS‐CoV helicase from a combinatorial DNA library. These aptamers show two distinct classes of secondary structure, G‐quadruplex and non‐G‐quadruplex, as shown by circular dichroism and gel electrophoresis. All of the aptamers that were selected stimulated ATPase activity of the SARS‐CoV helicase with low‐nanomolar apparent Km values. Intriguingly, only the non‐G‐quadruplex aptamers showed specific inhibition of helicase activities, whereas the G‐quadruplex aptamers did not inhibit helicase activities. The non‐G‐quadruplex aptamer with the strongest inhibitory potency was modified at the 3′‐end with biotin or inverted thymidine, and the modification increased its stability in serum, particularly for the inverted thymidine modification. Structural diversity in selection coupled to post‐selection stabilisation has provided new insights into the aptamers that were selected for a helicase target. These aptamers are being further developed to inhibit SARS‐CoV replication.  相似文献   

19.
Methods for the detection of specific interactions between diverse proteins and various small-molecule ligands are of significant importance in understanding the mechanisms of many critical physiological processes of organisms. The techniques also represent a major avenue to drug screening, molecular diagnostics, and public safety monitoring. Terminal protection assay of small molecule-linked DNA is a demonstrated novel methodology which has exhibited great potential for the development of simple, sensitive, specific and high-throughput methods for the detection of small molecule–protein interactions. Herein, we review the basic principle of terminal protection assay, the development of associated methods, and the signal amplification strategies adopted for performance improving in small molecule–protein interaction assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号