首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
梁学杰 《功能材料》2023,(3):3217-3223
针对水泥混凝土存在的抗折强度不足、耐久性能偏低等问题,以环氧树脂为掺杂相,制备了不同环氧树脂掺量(0%,3%,6%,9%(质量分数))的改性水泥混凝土,分析了环氧树脂对水泥混凝土力学性能、微观形貌、耐久性能的影响。结果表明,环氧树脂的掺杂加速了水化反应的进行,混凝土的裂纹和孔隙数量减少,致密度提高。混凝土的抗压强度和抗折强度均随环氧树脂掺杂量的增大而先增大后减小,6%(质量分数)环氧树脂掺杂量的混凝土在养护28 d时抗压强度和抗折强度分别达到最大值43.8和7.9 MPa,相比未掺杂环氧树脂的混凝土分别提高了18.70%和29.51%。随着环氧树脂掺杂量的增大,混凝土的氯离子扩散系数先降低后增高,6%(质量分数)环氧树脂掺杂量的混凝土养护28 d的氯离子扩散系数最低为7.7×10-8 cm/s,抗氯离子腐蚀性能最佳。在冻融循环次数达到80次时,6%(质量分数)环氧树脂掺杂量的混凝土的质量损失率最低为-0.13%,相对动弹性模量最大为94.86%,磨损量最低为0.66 kg/m2,磨损量降低率达到46.77%,具有优异的耐久性能。  相似文献   

2.
许圣泽 《功能材料》2024,(2):2009-2014+2021
以玄武岩碎石为天然粗骨料,废弃混凝土为再生粗骨料,聚丙烯纤维为增强相,制备了不同聚丙烯纤维掺杂量的多孔生态混凝土,探究了聚丙烯纤维的掺杂量对多孔生态混凝土的物理性能、微观形貌、力学性能及抗冻性能的影响。结果表明,多孔生态混凝土的透水系数和孔隙率呈现出正向线性关系,随着聚丙烯纤维掺杂量的增大,混凝土的透水系数和孔隙率持续降低;适量聚丙烯纤维的掺杂能够在多孔生态混凝土中形成均匀致密的网格结构,当聚丙烯纤维的掺杂量为3%(体积分数)时,混凝土的致密度最高。随着聚丙烯纤维掺杂量的增大,混凝土的抗折强度先增大后降低,抗压强度先快速增大后缓慢增大。在28 d龄期下,当聚丙烯纤维的掺杂量为3%(体积分数)时,混凝土的抗折强度达到最大值4.68 MPa,对应的抗压强度为14.68 MPa。经历100次冻融循环后,当聚丙烯纤维的掺杂量为3%(体积分数)时,混凝土的质量损失率最低为2.17%,相对动弹性模量最高为84.81%,抗冻性能最佳。因此,聚丙烯纤维的最佳掺杂量为3%(体积分数)。  相似文献   

3.
周美容  戴丽 《功能材料》2023,(1):1127-1132
纳米碳纤维凭借着高的抗拉强度和弹性模量,被广泛应用于水泥混凝土的增韧剂。通过在混凝土材料中掺入不同含量(0,0.3%,0.6%和0.9%(质量分数))的纳米碳纤维,研究了纳米碳纤维掺杂量对混凝土力学性能和抗冻性能的影响。结果表明,纳米碳纤维的掺杂未生成新的产物,但加速了水化反应的进行,增加了改性混凝土的结构致密性,减小了孔隙和缺陷的数量。当纳米碳纤维的掺杂量为0.6%(质量分数)时,改性混凝土的形貌结构最佳。随着纳米碳纤维掺杂量的增加,改性混凝土的抗压强度、抗折强度和磨损量降低比率先增大后减小,单位面积的磨损量和80次冻融循环时刻的质量损失率先减小后增大。当纳米碳纤维的掺杂量为0.6%(质量分数)时,改性混凝土28 d的抗压强度和抗折强度达到最大值,分别为47.83和5.92 MPa,单位面积的磨损量最小为1.12%,磨损量降低比率最大为55.56%,80次冻融循环时刻的质量损失率最小为1.23%。综合各分析可知,纳米碳纤维的最佳掺杂量为0.6%(质量分数)。  相似文献   

4.
张雪梅  刘荣桂  戴丽  周恺 《功能材料》2023,(4):4087-4092
以普通硅酸盐水泥P.O 42.5为基体材料,石墨烯为增强材料,制备出了不同石墨烯掺杂量(0,0.04%,0.08%和0.12%(质量分数))的改性混凝土。研究了石墨烯掺杂量对改性混凝土晶体结构、微观形貌、力学性能和抗冻性能的影响。结果表明,石墨烯的掺杂并未生成新的水化产物,但加速了水化反应的速率,生成的水化产物凝胶填充到混凝土的缝隙中,提高了混凝土的致密性;当石墨烯的掺杂量为0.08%(质量分数)时,改性混凝土的孔隙数量最少、密实度最大,其形貌最佳;石墨烯改性混凝土在各养护龄期下的抗压强度均随着石墨烯掺杂量的增加而先增大后减小,在28 d的养护龄期下,当石墨烯的掺杂量为0.08%(质量分数)时,改性混凝土的抗压强度达到了最大值48.62 MPa;在60次冻融循环后,当石墨烯的掺杂量为0.08%(质量分数)时,改性混凝土的质量损失率最小为0.414%,相对动弹性模量最大为94.02%,石墨烯改性混凝土的抗冻性能显著改善。综合分析可知,改性混凝土中石墨烯的最佳掺杂量为0.08%(质量分数)。  相似文献   

5.
刘文娟 《功能材料》2022,(8):8159-8164
氧化石墨烯因具有较高的强度、韧性和强的表面活性等优点常被用于水泥基材料中,不仅能够提高力学性能,还可以改善耐久性。通过在混凝土中掺杂氧化石墨烯,制备了不同氧化石墨烯掺量(0, 0.03%,0.06%和0.09%(质量分数))的改性混凝土,研究了氧化石墨烯掺量对改性混凝土的晶体结构、微观形貌、力学性能和抗冻性能的影响。结果表明,适量的氧化石墨烯掺杂加速了改性混凝土的水化反应,细化了孔结构,提高了密实度;随着氧化石墨烯掺杂量的增加,改性混凝土的抗压强度、抗折强度和相对弹性模量均先升高后降低,当氧化石墨烯的掺杂量为0.06%(质量分数)时,28 d的抗压强度、抗折强度和相对弹性模量均达到最大值,分别为43.05,5.58 MPa和94.19%,改性混凝土的力学性能和抗冻性能最佳。  相似文献   

6.
魏景  张航 《功能材料》2023,(6):6121-6127
以聚丙烯腈(PAN)基碳纤维为无机填料,制备了PAN基碳纤维复合混凝土,研究了PAN基碳纤维掺量对混凝土力学性能、耐磨性能、抗冻性能等的影响。结果表明,PAN基碳纤维的添加加速了水化反应的进行,减少了混凝土结构中的孔隙数量,提高了混凝土的密实度。复合混凝土的抗压强度和抗折强度随PAN基碳纤维掺杂量的增大而先增大后减小,养护28 d,当PAN基碳纤维的掺杂量为0.8%(质量分数)时,抗压强度和抗折强度达到最大值,分别为50.73和5.58 MPa,这是由于PAN基碳纤维的添加使砂浆与集料之间的结合强度增加所致。养护28 d,当PAN基碳纤维的掺杂量为0.8%(质量分数)时,复合混凝土的单位面积磨损量最小为0.95 kg/m2,单位面积磨损量降低率最大为55.81%,冻融循环100次时质量损失率最低为1.14%,相对动弹性模量最高达95.03%,复合混凝土的氯离子扩散系数最低为8.1×10-8 cm/s,具有优异的抗冻性能和抗氯离子侵蚀能力。  相似文献   

7.
孙亚颇 《功能材料》2023,(1):1115-1119
以普通硅酸盐水泥P.O 42.5为基体材料,不同掺杂量(0,0.4%,0.8%和1.2%(质量分数))的纳米碳纤维为增强相,制备了纳米碳纤维增韧水泥基复合材料,研究了纳米碳纤维的掺杂量对水泥基复合材料晶体结构、力学性能和耐久性能的影响。结果表明,纳米碳纤维的掺杂在水泥基复合材料中未出现新的水化产物,但加速了水化反应的进行;纳米碳纤维的“连接”作用使水泥基复合材料的孔结构变得致密,裂纹和孔隙减少;随着纳米碳纤维掺杂量的增加,水泥基复合材料的抗压强度和抗折强度先增大后减小,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料28 d的抗压强度和抗折强度均达到了最大值,分别为82.4和13.1MPa;采用单面盐冻法对水泥基复合材料进行抗冻性能测试,发现纳米碳纤维的掺杂改善了水泥基复合材料的抗冻性能,当纳米碳纤维的掺杂量为0.8%(质量分数)时,水泥基复合材料在28次冻融循环后单位面积质量损失量最小为0.114 kg/m2。综合力学性能和耐久性能分析可知,纳米碳纤维的最佳掺量为0.8%(质量分数)。  相似文献   

8.
赵云丽  侯风  崔二江 《功能材料》2023,(12):12136-12141
为了获得优异保温性能和高强度的节能保温砂浆,以普通硅酸盐水泥P.O 42.5作为基质材料,通过在砂浆中添加适量的碳纤维作为增强材料,以此制备了碳纤维建筑节能保温砂浆,研究了碳纤维的掺杂量对保温砂浆的力学性能、收缩率及保温性能的影响,并建立了保温砂浆导热系数和表观密度的关系式。结果表明,随着碳纤维掺杂量的增大,保温砂浆的表观密度先降低后轻微升高,稠度、抗压强度和抗折强度均先升高后降低。在28 d龄期,当碳纤维的掺杂量为0.5%(质量分数)时,保温砂浆中网状结构的致密性最好,抗压强度和抗折强度均达到最大值,分别为46.1和6.8 MPa,其中抗折强度提高了23.64%,改善效果高于抗压强度。随着碳纤维掺杂量的增大,保温砂浆的收缩率持续降低,导热系数先降低后增大,当碳纤维的掺杂量为0.5%(质量分数)时,保温砂浆的导热系数达到最低值为0.0583 W/(m·K),保温性能最佳。通过拟合保温砂浆的导热系数和表观密度发现两者为线性相关,方程的拟合度为98.4%。综合可知,碳纤维的最佳掺杂量为0.5%(质量分数)。  相似文献   

9.
聚合物乳液可改善浆体新拌状态,提高透水混凝土强度,本工作采用苯丙乳液(SAE)、聚丙烯酸酯乳液(PAE)对透水混凝土进行改性,研究两者对透水混凝土浆体流变性能、力学性能和透水性能的影响。结果表明,掺入SAE会降低浆体塑性黏度,对新拌浆体流动度影响不显著,透水混凝土抗压强度随着其掺量的增加先提高后降低,聚灰比为1.5%时,浆体的28 d抗压强度相比于对照组R-0提高了8.2%,透水混凝土28 d抗压强度最高为35.5 MPa,相比对照组高了4.1%;掺入PAE会提高浆体的塑性黏度,新拌浆体流动度逐渐减小,透水混凝土抗压强度先提高后降低,透水系数降低,PAE聚灰比为6%时,浆体28 d抗压强度相比于对照组R-0提高了9.6%,透水混凝土28 d强度达到36.8 MPa,相比于对照组R-0提高了7.9%,透水系数达到2.47 mm/s。  相似文献   

10.
张新影  王雪  崔彦  王冠明 《功能材料》2023,(6):6155-6160
选择以环氧树脂E51为基体,玻璃纤维为增强相,间苯二胺为固化剂,玻璃纤维掺杂量为环氧树脂和固化剂总质量的0,5%,10%,15%和20%,制备出了玻纤复合材料。研究了不同玻璃纤维掺杂量对玻纤复合材料微观形貌、孔径分布、力学性能及导热性能的影响。结果表明,掺入适量的玻璃纤维后提高了环氧树脂各部分与纤维之间的结合强度,从而改善了玻纤复合材料的致密性,减小了平均孔径、孔体积和孔隙。当玻璃纤维的掺杂量为15%(质量分数)时,玻纤复合材料的孔洞和缺陷数量最少,结合强度和致密性最佳,孔体积最小为0.95 cm3/g,平均孔径最小为26.3 nm,孔隙率最低为0.93%。随着玻璃纤维掺杂量的增加,玻纤复合材料的抗拉强度、断裂延伸率和抗折强度均先增高后降低,导热系数先降低后增大。当玻璃纤维的掺杂量为15%(质量分数)时,抗拉强度、断裂延伸率和抗折强度均达到最大值,分别为45.10 MPa, 1.61%和39.60 MPa;导热系数最低为0.021 W/(m·K),保温性能最佳,在建筑节能材料的开发与应用方面具有广阔的前景。  相似文献   

11.
程思嫄  陈代果  古巍 《功能材料》2023,(2):2153-2158
氧化石墨烯凭借较高的比表面积和独特的片层状结构,具有优异的理化性能。为获得高性能的水泥基注浆材料,通过引入不同掺杂量(0.00,0.02%,0.04%和0.06%(质量分数))的氧化石墨烯,制备了改性水泥基注浆材料。采用XRD、SEM、FT-IR和力学性能测试等分析了氧化石墨烯的掺杂量对改性水泥基注浆材料晶体结构、力学性能和自收缩性能的影响。结果表明:氧化石墨烯的掺杂加速了水化反应的进行,提高了Ca(OH)2的生成速率,同时减小了裂纹数量,增加了结构致密性;当氧化石墨烯的掺杂量为0.04%(质量分数)时,28 d的抗压强度、抗折强度和劈裂抗拉强度均达到了最大值,分别为59.80,14.70和1.89 MPa;所有注浆材料在水化前期收缩较快,20 h后收缩量进入了“平台期”,随着氧化石墨烯掺杂量的增加,改性注浆材料的自收缩性能抑制效果先增大后减小,当氧化石墨烯的掺杂量为0.04%(质量分数)时,改性注浆材料的自收缩量最小。  相似文献   

12.
何松松  焦楚杰  欧旭 《材料导报》2023,(21):136-142
透水混凝土是建设海绵城市的关键材料。目前普通透水混凝土强度低,抗冻性能差,使其难以在机动车道和有抗冻需求的道路工程中应用。本工作基于颗粒堆积模型研制了抗压强度超过160 MPa的超高强胶凝基质,其具有较强的成膜能力,且稳定膜厚度(SPFT)随流动度的减小和骨料粒径的增大而增加。本工作还建立了SPFT与流动度的关系,进而提出了高强抗冻透水混凝土(HSFRPC)配合比设计方法。利用该方法设计并制备出抗压强度大于50 MPa、弯曲强度大于7.5 MPa、透水系数大于4 mm/s、抗冻等级达F300的HSFRPC。本试验分析了骨料粒径和孔隙率对HSFRPC工程性能(力学性能、透水性能和抗冻性能)的影响规律。基于雷达图的性能评估结果表明:骨料粒径为2.36~4.75 mm、设计孔隙率为20%的HSFRPC工程性能优越且各项性能均衡,可供寒区道路工程参考。  相似文献   

13.
何晓航  韩俊艳 《功能材料》2022,(7):7169-7174
在普通硅酸盐水泥P.O 42.5的基础上,采用掺杂量为0,0.03%,0.05%和0.07%(质量分数)的氧化石墨烯作为基体的增强相,制备了氧化石墨烯改性混凝土。测试了改性混凝土试样的孔隙率、力学性能、碳化性能和磨损性能,并对各指标的相关性进行了分析。结果表明,适量氧化石墨烯的掺杂促进了改性混凝土的水化反应,对水泥水化产物的结晶组成没有影响,且使水化产物尺寸得到细化,生成了更加规则的结晶化合物;随着氧化石墨烯掺杂量的升高,改性混凝土的孔隙率、碳化深度和磨损量均呈现出先降低后升高的趋势,而抗压强度和抗折强度表现出先升高后降低的趋势;当氧化石墨烯的掺杂量为0.05%(质量分数)时,孔隙率最低为27.53%,7和28 d的碳化深度均为最低值1.46和3.81 mm,磨损量为最低值1.24 kg/m2,28 d的抗拉强度和抗折强度均为最大值53.9和6.7 MPa。可知,当氧化石墨烯的掺杂量为0.05%(质量分数)时,改性混凝土的综合性能最佳。  相似文献   

14.
袁汉卿  蒋友宝  崔玉理  周浩 《材料导报》2018,32(Z2):466-470
为系统掌握再生骨料透水混凝土的制备和性能变化规律,采用实验手段研究了再生骨料透水混凝土的透水性能和抗压强度。参考一般混凝土试验方法,分析在不同骨料粒径组合下原生骨料透水混凝土透水性能和抗压强度的差异。在此基础上,选择透水性能和抗压强度均较优的骨料粒径组合,在其中加入再生骨料,探究不同再生骨科取代率对再生骨料透水混凝土透水性能和抗压强度的影响以及透水系数与抗压强度间的相关性。结果表明:(1)对于采用的粒径组合(10 mm+20 mm),再生骨料透水混凝土的抗压强度较原生骨料透水混凝土高,当取代率不超过50%时,其抗压强度随取代量的增加而增大,但当取代率超过50%时,其抗压强度则有所下降;(2)再生骨料透水混凝土的透水性能较原生骨料透水混凝土好,透水系数随取代量的增加会有30%~195%的增幅;(3)与原生骨料透水混凝土抗压强度随透水系数增加持续下降变化不同,再生骨料透水混凝土的抗压强度随透水系数的增加会呈先上升后下降的变化。  相似文献   

15.
采用涤棉混纺(P/C)和涤纶(PE)废弃织物增强水泥基透水混凝土砖,分析织物含量和织物尺寸等因素对复合透水砖(CPB)抗压性能、透水性和保水性的影响。结果表明:随着织物掺加体积分数的增加,CPB的抗压强度、压缩韧性指数和所消耗能量先增大后减小,透水系数和保水系数增加;随着织物尺寸增大,CPB的抗压强度、透水系数和保水系数逐渐减小,压缩韧性指数增加,耗能变化幅度不大;在织物和纤维掺加量较小且掺加质量相同的条件下,与废弃织物CPB相比,再生纤维CPB的抗压强度较小,而压缩韧性指数、耗能和透水系数较大;当织物掺加体积分数≤2%时,涤棉复合透水砖(PC-CPB)的抗压强度优于涤纶复合透水砖(P-CPB),透水系数、保水系数和P-CPB接近,当织物掺加体积分数>2%时则相反,而PC-CPB的压缩韧性指数和耗能始终优于P-CPB;织物掺加体积分数为2%的3 mm×3 mm P/C织物所制备的CPB抗压强度为28.20 MPa,耗能为1097.55 N·m,透水系数为0.267 mm/s,保水系数为43.40 g/cm2,与普通透水砖相比,分别提高了21.8%、55.8%、115.3%和33.3%。   相似文献   

16.
本实验研究了不同仿钢纤维掺量(0%、0.2%、0.4%、0.6%)对透水混凝土抗压强度和透水系数的影响,并分析了骨料粒径、细骨料、纤维素等因素对仿钢纤维增强透水混凝土抗压强度和透水性能的影响。研究表明:仿钢纤维能够在一定程度上提高透水混凝土的早期强度;随仿钢纤维掺量的增加,透水混凝土28 d的抗压强度呈先上升后下降趋势,即存在最优掺量;当仿钢纤维掺量增加时,透水混凝土的透水能力先下降后上升;透水混凝土的抗压强度随骨料粒径的增大而降低,透水系数随骨料粒径的增大而明显增大;细骨料会使透水混凝土的早期抗压强度降低,但会提高透水混凝土28 d的抗压强度;随着细骨料取代量的增加,透水混凝土的透水系数先增大后减小;透水混凝土的抗压强度随纤维素掺量的增加而降低,透水系数随纤维素掺量的增加而增大。本研究可为实际透水混凝土施工过程中外掺料的选择提供参考。  相似文献   

17.
透水混凝土因具有透水透气、吸声减噪等功能而被广泛研究和关注。然而,其普遍存在孔隙结构,造成受力不均,使得透水混凝土只能用于低荷载的路面。为了提高透水混凝土的强度和耐久性,本研究将地聚物作为透水混凝土的胶凝材料,并采用正交试验研究了最佳配比,分析了孔隙率、骨料粒径、激固比、矿渣掺量、水玻璃模数对其性能的影响。以抗压强度、劈裂抗拉强度、透水系数、抗冻性为指标,拟合分析了孔隙率与透水系数、透水系数与抗压强度、孔隙率与抗劈裂强度之间的关系。结果表明:目标孔隙率15%、激固比60%、骨料粒径2~5 mm、水玻璃模数1. 4、矿渣掺量20%为最优配比,所得地聚物透水混凝土的28 d抗压强度为33 MPa,抗劈裂强度为2. 4 MPa,透水系数为8. 4 mm/s,抗冻性能达标。  相似文献   

18.
透水混凝土的强度和抗冻性是影响其在重荷载交通道路和寒冷地区推广应用的关键性能。本工作研究了胶浆工作性能、强度、界面粘结性能及透水混凝土强度、抗冻性,并揭示了影响透水混凝土性能的主要因素。结果表明,通过最大浆集比可以评价胶浆和透水混凝土的工作性能,且当最大浆集比与设计浆集比接近时,透水混凝土的工作性能最佳。未改性胶浆界面冻融前后均发生粘结破坏。而改性胶浆未冻融时界面拉拔强度提升67%~156%,发生内聚破坏;冻融后界面拉拔强度显著降低,发生内聚、粘结混合破坏。工作性能良好的透水混凝土抗压强度为38.2~40.3 MPa,抗折强度为3.8~4.3 MPa,透水系数为2.85~2.92 mm/s。主成分分析结果表明,各因素对透水混凝土性能影响的占比依次为:界面性能、胶浆配合比、空隙特征共占44.8%,胶浆裹覆性能占27.5%,胶浆强度占20.0%。  相似文献   

19.
刘琼  刘科元  于晓琦  魏婧 《功能材料》2022,(8):8231-8236
以硅酸盐水泥P.O 42.5为基础材料、短切PAN基碳纤维为增强相制备了分散均匀的碳纤维水泥基复合材料,研究了不同掺杂量(0,0.3%,0.6%和0.9%(质量分数))短切PAN基碳纤维的水泥基复合材料的物相结构、微观形貌、力学性能、耐磨性能和抗碳化性能。结果表明,短切PAN基碳纤维的掺杂加速了水化反应的进行,没有产生新的水化产物,碳纤维在水泥基复合材料中呈三维错落分布,构成网格结构,提高了水化产物之间的结合强度,提高了水泥基复合材料的致密性,从而提高了水泥基复合材料的力学性能、耐磨性能和抗碳化性能。随着短切PAN基碳纤维掺杂量的增加,水泥基复合材料7和28 d的抗压强度和抗折强度均表现出先增大后降低的趋势,而质量损失率和碳化深度则表现出先降低后升高的趋势。当短切PAN基碳纤维的掺杂量为0.6%(质量分数)时,质量损失率达到最小值0.34%,养护7和28 d后,抗压强度达到了最大值69.3和86.4 MPa,抗折强度也达到了最大值11.1和14.1 MPa,而碳化深度达到最低值0.35和2.53 mm。综合分析可知,短切PAN基碳纤维的最佳掺杂量为0.6%(质量分数)。  相似文献   

20.
师杰  沈子杨 《功能材料》2022,(6):6100-6105
以纳米TiO2为填料,通过调整纳米TiO2的掺杂比例(0,2%,4%和6%)(质量分数),制备出了不同掺量的纳米TiO2改性水泥基混凝土复合材料,对混凝土复合材料的力学性能、微观形貌和耐久性能等进行了分析。结果表明,随着纳米TiO2掺杂含量的增加,混凝土复合材料的抗压强度和抗折强度均呈现出先升高后降低的趋势,孔隙率和磨损量表现出先降低后略微升高的趋势。当纳米TiO2的掺杂含量为4%(质量分数)时,28 d抗压强度和抗折强度均达到最大值,分别为42.57和5.62 MPa,孔隙率最低为9.57%,磨损量最少为1.81 kg/m2,磨损降低率最大为42.54%。抗盐冻性测试表明,在经过7次冻融循环后,随着纳米TiO2掺杂含量的增加,次冻融循环后的质量损失率持续降低,抗盐冻性能得到显著改善。SEM分析可知,掺入适量纳米TiO2后,钙矾石的形貌有从针状向扁圆形转变的趋势,促进了凝胶的形成,提升了整体结构的致密性,从而提高...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号