首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.  相似文献   

2.
We study the structure and optical properties of arrays of silicon nanowires (SiNWs) with a mean diameter of approximately 100 nm and length of about 1–25 μm formed on crystalline silicon (c-Si) substrates by using metal-assisted chemical etching in hydrofluoric acid solutions. In the middle infrared spectral region, the reflectance and transmittance of the formed SiNW arrays can be described in the framework of an effective medium with the effective refractive index of about 1.3 (porosity, approximately 75%), while a strong light scattering for wavelength of 0.3 ÷ 1 μm results in a decrease of the total reflectance of 1%-5%, which cannot be described in the effective medium approximation. The Raman scattering intensity under excitation at approximately 1 μm increases strongly in the sample with SiNWs in comparison with that in c-Si substrate. This effect is related to an increase of the light-matter interaction time due to the strong scattering of the excitation light in SiNW array. The prepared SiNWs are discussed as a kind of ‘black silicon’, which can be formed in a large scale and can be used for photonic applications as well as in molecular sensing.  相似文献   

3.
ABSTRACT: This work reports on Raman scattering of rhodamine (R6G) molecules absorbed on either randomly distributed or grating-like arrays of approximately 8-nm Ag nanoparticles developed by inert gas aggregation. Optimal growth and surface-enhanced Raman scattering (SERS) parameters have been obtained for the randomly distributed nanoparticles, while effects related to the aging of the silver nanoparticles were studied. Grating-like arrays of nanoparticles have been fabricated using line arrays templates formed either by fracture-induced structuring or by standard lithographic techniques. Grating structures fabricated by both methods exhibit an enhancement of the SERS signal, in comparison to the corresponding signal from randomly distributed Ag nanoparticles, as well as a preferential enhancement in the areas of the sharp features, and a dependence on the polarization direction of the incident exciting laser beam, with respect to the orientation of the gratings structuring. The observed spectroscopic features are consistent with a line-arrangement of hot-spots due to the self- alignment of metallic nanoparticles, induced by the grating-like templates.  相似文献   

4.
Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs) via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS), these porous nanowires also show excellent photoluminescence (PL) properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A “red-shift” of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices.  相似文献   

5.
Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated SiNW arrays. A double-junction tandem structure was designed to manufacture our hybrid cells. Both short-circuit current and external quantum efficiency measurements show an enhancement in optical absorption of organic layer, especially at lower wavelengths.  相似文献   

6.
Silicon nanowire (SiNW) arrays were prepared on silicon substrates by metal-assisted chemical etching and peeled from the substrates, and their optical properties were measured. The absorption coefficient of the SiNW arrays was higher than that for the bulk silicon over the entire region. The absorption coefficient of a SiNW array composed of 10-μm-long nanowires was much higher than the theoretical absorptance of a 10-μm-thick flat Si wafer, suggesting that SiNW arrays exhibit strong optical confinement. To reveal the reason for this strong optical confinement demonstrated by SiNW arrays, angular distribution functions of their transmittance were experimentally determined. The results suggest that Mie-related scattering plays a significant role in the strong optical confinement of SiNW arrays.  相似文献   

7.
Ordered porous metal nanomaterials have current and future potential applications, for example, as catalysts, as photonic crystals, as sensors, as porous electrodes, as substrates for surface-enhanced Raman scattering (SERS), in separation technology, and in other emerging nanotechnologies. Methods for creating such materials are commonly characterized as "templating", a technique that involves first the creation of a sacrificial template with a specific porous structure, followed by the filling of these pores with desired metal materials and finally the removal of the starting template, leaving behind a metal replica of the original template. From the viewpoint of practical applications, ordered metal nanostructures with hierarchical porosity, namely, macropores in combination with micropores or mesopores, are of particular interest because macropores allow large guest molecules to access and an efficient mass transport through the porous structures is enabled while the micropores or mesopores enhance the selectivity and the surface area of the metal nanostructures. For this objective, colloidal crystals (or artificial opals) consisting of three-dimensional (3D) long-range ordered arrays of silica or polymer microspheres are ideal starting templates. However, with respect to the colloidal crystal templating strategies for production of ordered porous metal nanostructures, there are two challenging questions for materials scientists: (1) how to uniformly and controllably fill the interstitial space of the colloidal crystal templates and (2) how to generate ordered composite metal nanostructures with hierarchical porosity. This Account reports on recent work in the development and applications of ordered macroporous bimetallic nanostructures in our laboratories. A series of strategies have been explored to address the challenges in colloidal crystal template techniques. By rationally tailoring experimental parameters, we could readily and selectively design different types of ordered bimetallic nanostructures with hierarchical porosity by using a general template technique. The applications of the resulting nanostructures in catalysis and as substrates for SERS are described. Taking the ordered porous Au/Pt nanostructures as examples for applications as catalysts, the experimental results show that both the ordered hollow Au/Pt nanostructure and the ordered macroporous Au/Pt nanostructure exhibit high catalytic ability due to their special structural characteristics, and their catalytic activity is component-dependent. As for SERS applications, primary experimental results show that these ordered macroporous Au/Ag nanostructured films are highly desirable for detection of DNA bases by the SERS technique in terms of a high Raman intensity enhancement, good stability, and reproducibility, suggesting that these nanostructures may find applications in the rapid detection of DNA and DNA fragments.  相似文献   

8.
Yang Y  Li ZY  Yamaguchi K  Tanemura M  Huang Z  Jiang D  Chen Y  Zhou F  Nogami M 《Nanoscale》2012,4(8):2663-2669
Novel surface-enhanced Raman scattering (SERS) substrates with high SERS-activity are ideal for novel SERS sensors, detectors to detect illicitly sold narcotics and explosives. The key to the wider application of SERS technique is to develop plasmon resonant structure with novel geometries to enhance Raman signals and to control the periodic ordering of these structures over a large area to obtain reproducible Raman enhancement. In this work, a simple Ar(+)-ion sputtering route has been developed to fabricate silver nanoneedles arrays on silicon substrates for SERS-active substrates to detect trace-level illicitly sold narcotics. These silver nanoneedles possess a very sharp apex with an apex diameter of 15 nm and an apex angle of 20°. The SERS enhancement factor of greater than 10(10) was reproducibly achieved by the well-aligned nanoneedles arrays. Furthermore, ketamine hydrochloride molecules, one kind of illicitly sold narcotics, can be detected down to 27 ppb by using our SERS substrate within 3 s, indicating the sensitivity of our SERS substrates for trace amounts of narcotics and that SERS technology can become an important analytical technique in forensic laboratories because it can provide a rapid and nondestructive method for trace detection.  相似文献   

9.
This paper studies nickel oxide/silicon nanowires (NiO/SiNWs) as composite thin films in electrodes for electrochemical capacitors. The SiNWs as backbones were first prepared by chemical etching, and then the Ni/SiNW composite structure was obtained by electroless plating of nickel onto the surface of the SiNWs. Next, the NiO/SiNW nanocomposites were fabricated by annealing Ni/SiNW composites at different temperatures in an oxygen atmosphere. Once the electrodes were constructed, the electrochemical behavior of these electrodes was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In 2 M KOH solution, the electrode material was found to have novel capacitive characteristics. Finally, when the NiO/SiNW composites were annealed at 400 °C, the maximum specific capacitance value was found to be as high as 681 F g−1 (or 183 F cm−3), and the probing of the cycling life indicated that only about 3% of the capacity was lost after 1000 charge/discharge cycles. This study demonstrated that NiO/SiNW composites were the optimal electrode choice for electrochemical capacitors.  相似文献   

10.
The electron field emission (EFE) properties of Si-nanowires (SiNW) were improved by coating a UNCD films on the SiNWs. The SiNWs were synthesized by an electroless metal deposition (EMD) process, whereas the UNCD films were deposited directly on bare SiNW templates using Ar-plasma based microwave plasma enhanced chemical vapor deposition (MPE–CVD) process. The electron field emission properties of thus made nano-emitters increase with MPE–CVD time interval for coating the UNCD films, attaining small turn-on field (E0 = 6.4 V/μm) and large emission current density (Je = 6.0 mA/cm2 at 12.6 V/μm). This is presumably owing to the higher UNCD granulation density and better UNCD-to-Si electrical contact on SiNWs. The electron field emission behavior of these UNCD nanowires emitters is significantly better than the bare SiNW ((E0)SiNWs = 8.6 V/μm and (Je)SiNWs < 0.01 mA/cm2 at the same applied field) and is comparable to those for carbon nanotubes.  相似文献   

11.
ABSTRACT: One-dimensional silicon nanowires (SiNWs) were prepared by electron beam evaporation in ultrahigh vacuum (UHV). The SiNWs can be grown through either vapor-liquid-solid (VLS) or oxide-assisted growth (OAG) mechanism. In VLS growth, SiNWs can be formed on Si surface, not on SiO2 surfaces. Moreover, low deposition rate is helpful for producing lateral SiNWs by VLS. But in OAG process, SiNWs can be grown on SiO2 surfaces, not on Si surfaces. This work reveals the methods of producing large-scale SiNWs in UHV.  相似文献   

12.
Silicon nanowire homojunction p-n solar cells were fabricated using Zn and Au metals as catalysts for growing the NWs. This design consisted of SiNWs, doped as p and n-types, catalyzed with Zn and Au catalysts to fabricate p-n homojunctions within each wire. The surface morphology, structure, and photovoltaic properties were investigated. The morphology for each of the catalyzed SiNWs was significantly different; the Zn catalyst produced short and thick NWs with diameters ranging from 190nm to 260nm, whereas the Au catalyst produced long SiNWs with diameters ranging from 140nm to 210nm. The Zn-catalyzed SiNW p-n solar cell showed a higher efficiency of 1.01 % compared with the Au-catalyzed SiNW p-n solar cell with an efficiency of 0.67 %.  相似文献   

13.
Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications.  相似文献   

14.
Vertically aligned silicon nanowires have been synthesized by the chemical etching of silicon wafers. The influence of a hydrogenated amorphous silicon (a-Si:H) layer (shell) on top of a silicon nanowire (SiNW) solar cell has been investigated. The optical properties of a-Si:H/SiNWs and SiNWs are examined in terms of optical reflection and absorption properties. In the presence of the a-Si:H shell, 5.2% reflection ratio in the spectral range (250 to 1,000 nm) is achieved with a superior absorption property with an average over 87% of the incident light. In addition, the characteristics of the solar cell have been significantly improved, which exhibits higher open-circuit voltage, short-circuit current, and efficiency by more than 15%, 12%, and 37%, respectively, compared with planar SiNW solar cells. Based on the current–voltage measurements and morphology results, we show that the a-Si:H shell can passivate the defects generated by wet etching processes.  相似文献   

15.
Surface-enhanced Raman scattering is an effective analytical method that has been intensively applied in the field of identification of organic molecules from Raman spectra at very low concentrations. The Raman signal enhancement that makes this method attractive is usually ascribed to the noble metal nanoparticle (NMNP) arrays which can extremely amplify the electromagnetic field near NMNP surface when localized surface plasmon resonance (LSPR) mode is excited. In this work, we report a simple, facile, and room-temperature method to fabricate large-scale, uniform gold nanoparticle (GNP) arrays on ITO/glass as SERS substrates using a promoted self-assembly deposition technique. The results show that the deposition density of GNPs on ITO/glass surface increases with prolonging deposition time, and nanochain-like aggregates appear for a relatively longer deposition time. It is also shown that these films with relatively higher deposition density have tremendous potential for wideband absorption in the visible range and exhibit two LSPR peaks in the extinction spectra because the electrons simultaneously oscillate along the nanochain at the transverse and the longitudinal directions. The SERS enhancement activity of these GNP arrays was determined using 10-6 M Rhodamine 6G as the Raman probe molecules. A SERS enhancement factor as large as approximately 6.76 × 106 can be obtained at 1,363 cm-1 Raman shift for the highest deposition density film due to the strong plasmon coupling effect between neighboring particles.  相似文献   

16.
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.  相似文献   

17.
The ordered H-terminated Si nanowire (SiNW) arrays via electroless etching method are capable of reducing silver ions, leading to the deposition of Ag nanoparticles (AgNPs) on SiNW. The AgNPs decorated SiNW arrays are directly fabricated into a novel sensor for the detection of hydrogen peroxide in phosphate buffered solutions. The results of electrochemical experiments reveal that such constructed sensor has a fast amperometric sensing, low detection limit and wide linear responding range as well as high sensitivity. Our results indicate that the AgNPs decorated SiNW arrays with favorable electrocatalytic performance are very promising for the future development of non-enzymatic hydrogen peroxide sensors.  相似文献   

18.
To achieve a high-efficiency silicon nanowire (SiNW) solar cell, surface passivation technique is very important because a SiNW array has a large surface area. We successfully prepared by atomic layer deposition (ALD) high-quality aluminum oxide (Al2O3) film for passivation on the whole surface of the SiNW arrays. The minority carrier lifetime of the Al2O3-depositedSiNW arrays with bulk silicon substrate was improved to 27 μs at the optimum annealing condition. To remove the effect of bulk silicon, the effective diffusion length of minority carriers in the SiNW array was estimated by simple equations and a device simulator. As a result, it was revealed that the effective diffusion length in the SiNW arrays increased from 3.25 to 13.5 μm by depositing Al2O3 and post-annealing at 400°C. This improvement of the diffusion length is very important for application to solar cells, and Al2O3 deposited by ALD is a promising passivation material for a structure with high aspect ratio such as SiNW arrays.  相似文献   

19.
We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution.  相似文献   

20.
Surface-enhanced Raman scattering (SERS) has been employed for the first time to characterize nano-sized organic carbon (NOC) particles produced in ordinary combustion processes. Ag-coated glass microparticles, used as SERS substrate, provide a Raman scattering cross section enhancement up to five orders of magnitude, which allows sample investigation at low concentration level. The observed spectral features supply a deeper insight on the chemical properties of the investigated combustion product. In addition, the high sensitivity of the SERS technique might be useful to test and characterize the toxicity of NOC particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号