首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Histone deacetylases (HDACs), widely found in various types of eukaryotic cells, play crucial roles in biological process, including the biotic and abiotic stress responses in plants. However, no research on the HDACs of Fagopyrum tataricum has been reported. Here, 14 putative FtHDAC genes were identified and annotated in Fagopyrum tataricum. Their gene structure, motif composition, cis-acting elements, phylogenetic relationships, protein structure, alternative splicing events, subcellular localization and gene expression pattern were investigated. The gene structure showed FtHDACs were classified into three subfamilies. The promoter analysis revealed the presence of various cis-acting elements responsible for hormone, abiotic stress and developmental regulation for the specific induction of FtHDACs. Two duplication events were identified in FtHDA6-1, FtHDA6-2, and FtHDA19. The expression patterns of FtHDACs showed their correlation with the flavonoid synthesis pathway genes. In addition, alternative splicing, mRNA enrichment profiles and transgenic analysis showed the potential role of FtHDACs in cold responses. Our study characterized FtHDACs, providing a candidate gene family for agricultural breeding and crop improvement.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The objective of this study was to determine reactive oxygen species (ROS) produced by fagopyrin F-rich fraction (FFF) separated from Tartary buckwheat flower extract exposed to lights and to investigate its antibacterial photodynamic inactivation (PDI) against Streptococcus mutans and its biofilm. ROS producing mechanisms involving FFF with light exposure were determined using a spectrophotometer and a fluorometer. S. mutans and its biofilm inactivation after PDI treatment of FFF using blue light (BL; 450 nm) were determined by plate count method and crystal violet assay, respectively. The biofilm destruction by ROS produced from FFF after exposure to BL was visualized using confocal laser scanning microscopy (CLSM) and field emission scanning electron microscope (FE-SEM). BL among 3 light sources produced type 1 ROS the most when applying FFF as a photosensitizer. FFF exposed to BL (5 and 10 J/cm2) significantly more inhibited S. mutans viability and biofilm formation than FFF without the light exposure (p < 0.05). In the PDI of FFF exposed to BL (10 J/cm2), an apparent destruction of S. mutans and its biofilm were observed by the CLSM and FE-SEM. Antibacterial PDI effect of FFF was determined for the first time in this study.  相似文献   

11.
12.
13.
The R2R3-MYB is a large gene family involved in various plant functions, including carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry (Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome provides an opportunity for investigating the organization and evolutionary characteristics of R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene family. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expression (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号