首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Excessive cross-linking is a major factor in the resistance to the remodelling of the extracellular matrix (ECM) during fibrotic progression. The role of TGFβ signalling in impairing ECM remodelling has been demonstrated in various fibrotic models. We hypothesised that increased ECM cross-linking by TGFβ contributes to skin fibrosis in Systemic Sclerosis (SSc). Proteomics was used to identify cross-linking enzymes in the ECM of primary human dermal fibroblasts, and to compare their levels following treatment with TGFβ-1. A significant upregulation and enrichment of lysyl-oxidase-like 1, 2 and 4 and transglutaminase 2 were found. Western blotting confirmed the upregulation of lysyl hydroxylase 2 in the ECM. Increased transglutaminase activity in TGFβ-1 treated ECM was revealed from a cell-based assay. We employed a mass spectrometry-based method to identify alterations in the ECM cross-linking pattern caused by TGFβ-1. Cross-linking sites were identified in collagens I and V, fibrinogen and fibronectin. One cross-linking site in fibrinogen alpha was found only in TGFβ-treated samples. In conclusion, we have mapped novel cross-links between ECM proteins and demonstrated that activation of TGFβ signalling in cultured dermal fibroblasts upregulates multiple cross-linking enzymes in the ECM.  相似文献   

2.
Particulate matters (PMs) increase oxidative stress and inflammatory response in different tissues. PMs disrupt the formation of primary cilia in various skin cells, including keratinocytes and melanocytes. In this study, we found that 2-isopropylmalic acid (2-IPMA) promoted primary ciliogenesis and restored the PM2.5-induced dysgenesis of primary cilia in dermal fibroblasts. Moreover, 2-IPMA inhibited the generation of excessive reactive oxygen species and the activation of stress kinase in PM2.5-treated dermal fibroblasts. Further, 2-IPMA inhibited the production of pro-inflammatory cytokines, including IL-6 and TNF-α, which were upregulated by PM2.5. However, the inhibition of primary ciliogenesis by IFT88 depletion reversed the downregulated cytokines by 2-IPMA. Moreover, we found that PM2.5 treatment increased the MMP-1 expression in dermal fibroblasts and a human 3-D-skin model. The reduced MMP-1 expression by 2-IPMA was further reversed by IFT88 depletion in PM2.5-treated dermal fibroblasts. These findings suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in dermal fibroblasts.  相似文献   

3.
Urolithin A is an active compound of gut-microbiota-derived metabolites of polyphenol ellagic acid that has anti-aging, antioxidative, and anti-inflammatory effects. However, the effects of urolithin A on polyinosinic acid-polycytidylic acid (poly(I:C))-induced inflammation remain unclear. Poly(I:C) is a double-stranded RNA (dsRNA) similar to a virus and is recognized by Toll-like receptor-3 (TLR3), inducing an inflammatory response in immune cells, such as macrophages. Inflammation is a natural defense process of the innate immune system. Therefore, we used poly(I:C)-induced RAW264.7 cells and attenuated the inflammation induced by urolithin A. First, our data suggested that 1–30 μM urolithin A does not reduce RAW264.7 cell viability, whereas 1 μM urolithin A is sufficient for antioxidation and the decreased production of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and C-C chemokine ligand 5. The inflammation-related proteins cyclooxygenase-2 and inducible nitric oxide synthase were also downregulated by urolithin A. Next, 1 μM urolithin A inhibited the levels of interferon (INF)-α and INF-β. Urolithin A was applied to investigate the blockade of the TLR3 signaling pathway in poly(I:C)-induced RAW264.7 cells. Moreover, the TLR3 signaling pathway, subsequent inflammatory-related pathways, and antioxidation pathways showed changes in nuclear factor-κB (NF-κB) signaling and blocked ERK/mitogen-activated protein kinase (MAPK) signaling. Urolithin A enhanced catalase (CAT) and superoxide dismutase (SOD) activities, but decreased malondialdehyde (MDA) levels in poly(I:C)-induced RAW264.7 cells. Thus, our results suggest that urolithin A inhibits TLR3-activated inflammatory and oxidative-associated pathways in macrophages, and that this inhibition is induced by poly(I:C). Therefore, urolithin A may have antiviral effects and could be used to treat viral-infection-related diseases.  相似文献   

4.
Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigate the migration and invasion effects of sinulariolide in hepatocellular carcinoma cell HA22T. Sinulariolide inhibited the migration and invasion effects of hepatocellular carcinoma cells in a concentration-dependent manner. The results of zymography assay showed that sinulariolide suppressed the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Moreover, protein levels of MMP-2, MMP-9, and urokinase-type plasminogen activator (uPA) were reduced by sinulariolide in a concentration-dependent manner. Sinulariolide also exerted an inhibitory effect on phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, Focal adhesion kinase (FAK), growth factor receptor-bound protein 2 (GRB2). Taken together, these results demonstrated that sinulariolide could inhibit hepatocellular carcinoma cell migration and invasion and alter HA22T cell metastasis by reduction of MMP-2, MMP-9, and uPA expression through the suppression of MAPKs, PI3K/Akt, and the FAK/GRB2 signaling pathway. These findings suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human hepatocellular carcinoma.  相似文献   

5.
6.
目的构建共表达口蹄疫病毒(FWDV)O型P1-2A-IL-18基因和AsiaI型P1-2A-3C基因的重组鸡痘病毒。方法将酶切得到的FWDVO型P1-2A-IL-18基因和AsiaI型P1-2A-3C基因克隆至鸡痘病毒表达载体pUTAL上,构建重组鸡痘病毒转移质粒pUTAL-P1-2A-3C-P1-2A-IL-18,与鸡痘病毒(FPV)282E4株共转染鸡胚成纤维细胞(CEF),通过BrdU3次加压筛选,挑选出单克隆重组病毒株,进行RT-PCR及间接免疫荧光(IFA)鉴定。结果重组鸡痘病毒转移质粒pUTAL-P1-2A-3C-P1-2A-IL-18经双酶切鉴定证明构建正确。经RT-PCR和IFA鉴定,证明所筛选的重组鸡痘病毒在CEF中能正确表达P1-2A-3C-P1-2A-IL-18基因盒。结论已成功构建了共表达FMDVO型P1-2A-IL-18基因和AsiaI型P1-2A-3C基因的重组鸡痘病毒。  相似文献   

7.
8.
Linear and crosslinked poly[1-(3-sulphopropyl)-2-vinyl-pyridinium-betaine] (PSPV) samples have been prepared by free radical polymerization of the zwitterionic monomer (SPV) in the absence and presence, respectively, of N,N′-methylene-bisacrylamide (MBA). The crosslinked xerogel was swollen to equilibrium at ambient temperature in water and in aqueous solutions of KSCN, KBr and KCl having concentrations ([salt]) extending up to 2 mol dm−3. In aqueous salt the degree of swelling exceeded the value in pure water (0.70), the enhancement in swelling being most marked at low values of [salt]. The content of water within hydrogel increased with salt concentration in swelling medium for low values of [salt] but thereafter fell with further increase in [salt]. In contrast, the salt content within swollen hydrogel displayed a continuous increase with increasing [salt]. The partition coefficient expressing concentration of salt in hydrogel relative to that in swelling medium increased sharply with [salt] at low values, but levelled out to values of 0.8–1.2 at higher values of [salt]. The difference in behaviour among the three salts was not dramatic, but indicated that the affinity of salt for the polymer lay generally in the order KSCN>KBr>KCl. This affinity was confirmed by conductometric determinations of the coefficient of selective adsorption of salt to polymer in solutions of linear PSPV. © 1999 Society of Chemical Industry  相似文献   

9.
Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.  相似文献   

10.
Dexmedetomidine (DEX), a selective α2 adrenergic receptor (AR) agonist, is commonly used as a sedative drug during critical illness. In the present study, we explored a novel accelerative effect of DEX on cardiac fibroblast (CF) differentiation mediated by LPS and clarified its potential mechanism. LPS apparently increased the expression of α-SMA and collagen I/III and the phosphorylation of p38 and Smad-3 in the CFs of mice. These effects were significantly enhanced by DEX through increasing α2A-AR expression in CFs after LPS stimulation. The CFs from α2A-AR knockout mice were markedly less sensitive to DEX treatment than those of wild-type mice. Inhibition of protein kinase C (PKC) abolished the enhanced effects of DEX on LPS-induced differentiation of CFs. We also found that the α-SMA level in the second-passage CFs was much higher than that in the nonpassage and first-passage CFs. However, after LPS stimulation, the TNF-α released from the nonpassage CFs was much higher than that in the first- and second-passage CFs. DEX had no effect on LPS-induced release of TNF-α and IL-6 from CFs. Further investigation indicated that DEX promoted cardiac fibrosis and collagen I/III synthesis in mice exposed to LPS for four weeks. Our results demonstrated that DEX effectively accelerated LPS-induced differentiation of CFs to myofibroblasts through the PKC-p38-Smad2/3 signaling pathway by activating α2A-AR.  相似文献   

11.
The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.  相似文献   

12.
13.
QO-58 (5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl)-1H-pyrazolol[1,5-a]pyrimidin-7-one) has been regarded to be an activator of KV7 channels with analgesic properties. However, whether and how the presence of this compound can result in any modifications of other types of membrane ion channels in native cells are not thoroughly investigated. In this study, we investigated its perturbations on M-type K+ current (IK(M)), Ca2+-activated K+ current (IK(Ca)), large-conductance Ca2+-activated K+ (BKCa) channels, and erg-mediated K+ current (IK(erg)) identified from pituitary tumor (GH3) cells. Addition of QO-58 can increase the amplitude of IK(M) and IK(Ca) in a concentration-dependent fashion, with effective EC50 of 3.1 and 4.2 μM, respectively. This compound could shift the activation curve of IK(M) toward a leftward direction with being void of changes in the gating charge. The strength in voltage-dependent hysteresis (Vhys) of IK(M) evoked by upright triangular ramp pulse (Vramp) was enhanced by adding QO-58. The probabilities of M-type K+ (KM) channels that will be open increased upon the exposure to QO-58, although no modification in single-channel conductance was seen. Furthermore, GH3-cell exposure to QO-58 effectively increased the amplitude of IK(Ca) as well as enhanced the activity of BKCa channels. Under inside-out configuration, QO-58, applied at the cytosolic leaflet of the channel, activated BKCa-channel activity, and its increase could be attenuated by further addition of verruculogen, but not by linopirdine (10 μM). The application of QO-58 could lead to a leftward shift in the activation curve of BKCa channels with neither change in the gating charge nor in single-channel conductance. Moreover, cell exposure of QO-58 (10 μM) resulted in a minor suppression of IK(erg) amplitude in response to membrane hyperpolarization. The docking results also revealed that there are possible interactions of the QO-58 molecule with the KCNQ or KCa1.1 channel. Overall, dual activation of IK(M) and IK(Ca) caused by the presence of QO-58 eventually may have high impacts on the functional activity (e.g., anti-nociceptive effect) residing in electrically excitable cells. Care must be exercised when interpreting data generated with QO-58 as it is not entirely KCNQ/KV7 selective.  相似文献   

14.
15.
《Progress in Polymer Science》2014,39(12):2010-2029
Hydrogels are widely used as provisional matrices for tissue engineering and regenerative medicine, showing also great promise as platforms for 3D cell culture. Different bio-functionalization strategies have been proposed to enhance the biological performance of hydrogels, particularly when they lack intrinsic bioactivity. In this context, the design of artificial materials that mimic structural and functional features of the natural extracellular matrix (ECM) has been pursued. This review presents an overview on bioengineering approaches of integrating protease-sensitive motifs into hydrogels, for the creation of cell-responsive biomimetic scaffolding materials that degrade in response to their proteolytic microenvironment. The successful incorporation of protease-sensitive motifs in several synthetic and natural polymers, which has been achieved using various chemical routes, is described. In each case, the selected peptide sequences and their target proteases are highlighted, along with the main achievements of the study. A critical analysis of current limitations and recent advances is also provided, along with suggestions for further improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号