首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase 2 (CDK2) is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP) binding site (Site I) and two non-competitive binding sites (Site II and III). In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV). All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate). In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.  相似文献   

2.
3.
Human cytomegalovirus (HCMV) infection poses a major health threat to immunocompromised individuals. Until recently, treatment of HCMV infection has relied solely on polymerase inhibitors that have safety and resistance issues. pUL89 provides the enzymatic functions for the HCMV terminase complex in viral DNA packaging and is an attractive target for developing a new class of HCMV drugs. However, inhibitors of the endonuclease activity of the C terminus of pUL89 (pUL89‐C) were unknown before our recently characterized hydroxypyridonecarboxylic acid (HPCA) hit 7 r (1‐(3‐chloro‐4‐fluorobenzyl)‐5‐hydroxy‐4‐oxo‐1,4‐dihydropyridine‐3‐carboxylic acid; numbered as 10 k in our previous publication: Y. Wang, L. Mao, J. Kankanala, Z. Wang, R. J. Geraghty, J. Virol. 2017 , 91, e02152‐16). Herein, we explored the structure–activity relationship (SAR) of the HPCA chemotype mainly with regard to the N1 site through the synthesis of 35 analogues. The SAR studies, along with molecular modeling, identified a possible pharmacophore model minimally consisting of a chelating triad and a hydrophobic phenyl or biphenyl methyl substituent at N1. Lastly, our best compounds consistently inhibited pUL89‐C in the low micromolar range in biochemical assays and exhibited strong antiviral activity without cytotoxicity, laying a solid medicinal chemistry foundation for further HCMV drug discovery efforts targeting pUL89‐C.  相似文献   

4.
The PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to N-myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis. Dysregulation is associated with several diseases, including breast, prostate, and cervical cancer. Here, we used the N-(1H-pyrazol-3-yl)pyrimidin-4-amine moiety from the promiscuous inhibitor 1 to target CDK16, by varying different residues. Further optimization steps led to 43d, which exhibited high cellular potency for CDK16 (EC50 = 33 nM) and the other members of the PCTAIRE and PFTAIRE family with 20–120 nM and 50–180 nM, respectively. A DSF screen against a representative panel of approximately 100 kinases exhibited a selective inhibition over the other kinases. In a viability assessment, 43d decreased the cell count in a dose-dependent manner. A FUCCI cell cycle assay revealed a G2/M phase cell cycle arrest at all tested concentrations for 43d, caused by inhibition of CDK16.  相似文献   

5.
Human cytomegalovirus (HCMV) is a major pathogenic herpesvirus that is prevalent worldwide and it is associated with a variety of clinical symptoms. Current antiviral therapy options do not fully satisfy the medical needs; thus, improved drug classes and drug-targeting strategies are required. In particular, host-directed antivirals, including pharmaceutical kinase inhibitors, might help improve the drug qualities. Here, we focused on utilizing PROteolysis TArgeting Chimeras (PROTACs), i.e., hetero-bifunctional molecules containing two elements, namely a target-binding molecule and a proteolysis-inducing element. Specifically, a PROTAC that was based on a cyclin-dependent kinase (CDK) inhibitor, i.e., CDK9-directed PROTAC THAL-SNS032, was analyzed and proved to possess strong anti-HCMV AD169-GFP activity, with values of EC50 of 0.030 µM and CC50 of 0.175 µM (SI of 5.8). Comparing the effect of THAL-SNS032 with its non-PROTAC counterpart SNS032, data indicated a 3.7-fold stronger anti-HCMV efficacy. This antiviral activity, as illustrated for further clinically relevant strains of human and murine CMVs, coincided with the mid-nanomolar concentration range necessary for a drug-induced degradation of the primary (CDK9) and secondary targets (CDK1, CDK2, CDK7). In addition, further antiviral activities were demonstrated, such as the inhibition of SARS-CoV-2 replication, whereas other investigated human viruses (i.e., varicella zoster virus, adenovirus type 2, and Zika virus) were found insensitive. Combined, the antiviral quality of this approach is seen in its (i) mechanistic uniqueness; (ii) future options of combinatorial drug treatment; (iii) potential broad-spectrum activity; and (iv) applicability in clinically relevant antiviral models. These novel data are discussed in light of the current achievements of anti-HCMV drug development.  相似文献   

6.
7.
8.
The effect of the antiviral peptide TAT-I24 on viral gene expression in cells infected with murine cytomegalovirus (MCMV) was investigated. The expression of immediate-early, early and late genes was highly induced upon infection with MCMV. In the presence of the peptide, the expression of all tested genes was sustainably reduced to a similar extent, independent of whether they were immediate-early, early or late genes. In contrast, the expression of host genes, such as NF-κB inhibitor alpha (Nfkbia), interferon-induced protein with tetratricopeptide repeats 1 (Ifit1), chemokine (C-X-C motif) ligand 10 (Cxcl10), chemokine (C-C motif) ligand 7 (Ccl7) and chemokine (C-C motif) ligand 5 (Ccl5), which are induced early upon virus infection, was only transiently suppressed in peptide-treated cells. The expression of other host genes which are affected by MCMV infection and play a role in endoplasmic reticulum stress or DNA-damage repair was not inhibited by the peptide. A combination of TAT-I24 with the nucleoside analogue cidofovir showed enhancement of the antiviral effect, demonstrating that viral replication can be more efficiently inhibited with a combination of drugs acting at different stages of the viral life-cycle.  相似文献   

9.
10.
4‐Anilinoquinolines were identified as potent and narrow‐spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4‐anilino group and the 6,7‐quinoline substituents produced GAK inhibitors with nanomolar activity, over 50 000‐fold selectivity relative to other members of the numb‐associated kinase (NAK) subfamily, and a compound (6,7‐dimethoxy‐N‐(3,4,5‐trimethoxyphenyl)quinolin‐4‐amine; 49 ) with a narrow‐spectrum kinome profile. These compounds may be useful tools to explore the therapeutic potential of GAK in prevention of a broad range of infectious and systemic diseases.  相似文献   

11.
The G1 phase of cell cycle progression is regulated by Cyclin-Dependent Kinase 4 (CDK4) as well as Cyclin-Dependent Kinase 6 (CDK6), and the acivities of these enzymes are regulated by the catalytic subunit, cyclin D. Cell cycle control through selective pharmacological inhibition of CDK4/6 has proven to be beneficial in the treatment of estrogen receptor-positive (ER-positive) breast cancer, particularly improving the progression-free survival of patients. Thus, targeting specific inhibition on CDK4/6 is bound to increase therapeutic efficiency. This study aimed to obtain CDK4/6 inhibitors through a pharmacophore-based virtual screening of the ZINC15 purchasable compound database using the in silico method. The pharmacophore model was designed based on the FDA-approved cdk4/6 inhibitor structures, and molecular docking was performed to further screen the hit compounds obtained. A total of eight compounds were selected based on docking results and interactions with CDK4 and CDK6, using palbociclib as the reference drug. According to the results, the compounds of ZINC585292724 and ZINC585291674 were the best compounds based on free binding energy, as well as hydrogen bond stability, and, therefore, exhibit potential as starting points in the development of CDK4/6 inhibitors.  相似文献   

12.
CDK2/cyclin A has appeared as an attractive drug targets over the years with diverse therapeutic potentials. A computational strategy based on comparative molecular fields analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) followed by molecular docking studies were performed on a series of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors. The CoMFA and CoMSIA models, using 38 molecules in the training set, gave r(2) (cv) values of 0.747 and 0.518 and r(2) values of 0.970 and 0.934, respectively. 3D contour maps generated by the CoMFA and CoMSIA models were used to identify the key structural requirements responsible for the biological activity. Molecular docking was applied to explore the binding mode between the ligands and the receptor. The information obtained from molecular modeling studies may be helpful to design novel inhibitors of CDK2/cyclin A with desired activity.  相似文献   

13.
Prostate cancer (PCa) is a reproductive system cancer in elderly men. We investigated the effects of betel nut arecoline on the growth of normal and cancerous prostate cells. Normal RWPE-1 prostate epithelial cells, androgen-independent PC-3 PCa cells, and androgen-dependent LNCaP PCa cells were used. Arecoline inhibited their growth in dose- and time-dependent manners. Arecoline caused RWPE-1 and PC-3 cell cycle arrest in the G2/M phase and LNCaP cell arrest in the G0/G1 phase. In RWPE-1 cells, arecoline increased the expression of cyclin-dependent kinase (CDK)-1, p21, and cyclins B1 and D3, decreased the expression of CDK2, and had no effects on CDK4 and cyclin D1 expression. In PC-3 cells, arecoline decreased CDK1, CDK2, CDK4, p21, p27, and cyclin D1 and D3 protein expression and increased cyclin B1 protein expression. In LNCaP cells, arecoline decreased CDK2, CDK4, and cyclin D1 expression; increased p21, p27, and cyclin D3 expression; had no effects on CDK1 and cyclin B1 expression. The antioxidant N-acetylcysteine blocked the arecoline-induced increase in reactive oxygen species production, decreased cell viability, altered the cell cycle, and changed the cell cycle regulatory protein levels. Thus, arecoline oxidant exerts differential effects on the cell cycle through modulations of regulatory proteins.  相似文献   

14.
Water networks within kinase inhibitor design and more widely within drug discovery are generally poorly understood. The successful targeting of these networks prospectively has great promise for all facets of inhibitor design, including potency and selectivity for the target. Herein, we describe the design and testing of a targeted library of 4-anilinoquin(az)olines for use as inhibitors of cyclin G-associated kinase (GAK). GAK cellular target engagement assays, ATP binding-site modelling and extensive water mapping provide a clear route to access potent inhibitors for GAK and beyond.  相似文献   

15.
Psoriasis is a chronic inflammatory skin disease. Recently, lysophosphatidic acid (LPA)/LPAR5 signaling has been reported to be involved in both NLRP3 inflammasome activation in macrophages and keratinocyte activation to produce inflammatory cytokines, contributing to psoriasis pathogenesis. However, the effect and molecular mechanisms of LPA/LPAR signaling in keratinocyte proliferation in psoriasis remain unclear. In this study, we investigated the effects of LPAR1/3 inhibition on imiquimod (IMQ)-induced psoriasis-like mice. Treatment with the LPAR1/3 antagonist, ki16425, alleviated skin symptoms in IMQ-induced psoriasis-like mouse models and decreased keratinocyte proliferation in the lesion. It also decreased LPA-induced cell proliferation and cell cycle progression via increased cyclin A2, cyclin D1, cyclin-dependent kinase (CDK)2, and CDK4 expression and decreased p27Kip1 expression in HaCaT cells. LPAR1 knockdown in HaCaT cells reduced LPA-induced proliferation, suppressed cyclin A2 and CDK2 expression, and restored p27Kip1 expression. LPA increased Rho-associated protein kinase 2 (ROCK2) expression and PI3K/AKT activation; moreover, the pharmacological inhibition of ROCK2 and PI3K/AKT signaling suppressed LPA-induced cell cycle progression. In conclusion, we demonstrated that LPAR1/3 antagonist alleviates IMQ-induced psoriasis-like symptoms in mice, and in particular, LPAR1 signaling is involved in cell cycle progression via ROCK2/PI3K/AKT pathways in keratinocytes.  相似文献   

16.
Cyclins and CDKs (Cyclin Dependent Kinases) are key players in the biology of eukaryotic cells, representing hubs for the orchestration of physiological conditions with cell cycle progression. Furthermore, as in the case of meiosis, cyclins and CDKs have acquired novel functions unrelated to this primal role in driving the division cycle. Meiosis is a specialized developmental program that ensures proper propagation of the genetic information to the next generation by the production of gametes with accurate chromosome content, and meiosis-specific cyclins are widespread in evolution. We have explored the diversification of CDK functions studying the meiosis-specific Crs1 cyclin in fission yeast. In addition to the reported role in DSB (Double Strand Break) formation, this cyclin is required for meiotic S-phase progression, a canonical role, and to maintain the architecture of the meiotic chromosomes. Crs1 localizes at the SPB (Spindle Pole Body) and is required to stabilize the cluster of telomeres at this location (bouquet configuration), as well as for normal SPB motion. In addition, Crs1 exhibits CDK(Cdc2)-dependent kinase activity in a biphasic manner during meiosis, in contrast to a single wave of protein expression, suggesting a post-translational control of its activity. Thus, Crs1 displays multiple functions, acting both in cell cycle progression and in several key meiosis-specific events.  相似文献   

17.
18.
Semaphorins (SEMAs) are axon guidance factors that participate in axonal connections and nerve system development. However, the functional roles of SEMAs in tumorigenesis are still largely uncovered. By using in silico data analysis, we found that SEMA6C was downregulated in pancreatic cancer, and its reduction was correlated with worse survival rates. RNA sequencing revealed that cell cycle-related genes, especially cyclin D1, were significantly altered after blockage of SEMA6C by neutralizing antibodies or ectopic expressions of SEMA6C. Mechanistic investigation demonstrated that SEMA6C acts as a tumor suppressor in pancreatic cancer by inhibiting the AKT/GSK3 signaling axis, resulting in a decrease in cyclin D1 expression and cellular proliferation. The enhancement of cyclin D1 expression and cyclin-dependent kinase activation in SEMA6C-low cancer created a druggable target of CDK4/6 inhibitors. We also elucidated the mechanism underlying SEMA6C downregulation in pancreatic cancer and demonstrated a novel regulatory role of miR-124-3p in suppressing SEMA6C. This study provides new insights of SEMA6C-mediated anti-cancer action and suggests the treatment of SEMA6C-downregulated cancer by CDK4/6 inhibitors.  相似文献   

19.
20.
The anticancer effects of ruxolitinib and calcitriol against breast cancer were reported previously. However, the effect of ruxolitinib and calcitriol combination treatment on various molecular subtypes of breast cancer remains unexplored. In this study, we used MCF-7, SKBR3, and MDA-MB-468 cells to investigate the effect of ruxolitinib and calcitriol combination treatment on cell proliferation, apoptosis, cell cycle, and cell signaling markers, in vitro and in vivo. Our results revealed the synergistic anticancer effect of ruxolitinib and calcitriol combination treatment in SKBR3 and MDA-MB-468 cells, but not in MCF-7 cells in vitro, via cell proliferation inhibition, apoptosis induction, cell cycle arrest, and the alteration of cell signaling protein expression, including cell cycle-related (cyclin D1, CDK1, CDK4, p21, and p27), apoptosis-related (c-caspase and c-PARP), and cell proliferation-related (c-Myc, p-p53, and p-JAK2) proteins. Furthermore, in the MDA-MB-468 xenograft mouse model, we demonstrated the synergistic antitumor effect of ruxolitinib and calcitriol combination treatment, including the alteration of c-PARP, cyclin D1, and c-Myc expression, without significant drug toxicity. The combination exhibited a synergistic effect in HER2-enriched and triple-negative breast cancer subtypes. In conclusion, our results suggest different effects of the combination treatment of ruxolitinib and calcitriol depending on the molecular subtype of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号