首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CXCR4在乳腺癌中的表达及乌斯他丁对其表达的影响   总被引:1,自引:1,他引:0  
目的探讨趋化因子受体CXCR4在乳腺癌中的表达及其与肿瘤转移的相关性,以及乌斯他丁(UTI)对其表达的影响。方法采用流式细胞术和RT-PCR法检测22例乳腺癌患者的癌组织、癌旁组织、正常组织以及乳腺癌细胞MDA-MB-231中CXCR4在蛋白和mRNA水平的表达情况,以及UTI对MDA-MB-231细胞CXCR4表达的影响。结果在乳腺癌组织和MDA-MB-231细胞中,CXCR4在蛋白和mRNA水平的表达均显著高于癌旁组织和正常组织,且CXCR4的表达与乳腺癌的转移密切相关;UTI能下调CXCR4的表达,经UTI作用后,MDA-MB-231细胞的趋化活性降低。结论CXCR4在乳腺癌中高表达,在乳腺癌的转移中起重要作用,下调乳腺癌细胞CXCR4的表达水平可减少或抑制其转移。  相似文献   

2.
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12–CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12–CXCR4/CXCR7 axis as a treatment strategy for CRC.  相似文献   

3.
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.  相似文献   

4.
Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.  相似文献   

5.
Chemokine receptors and their ligands have been identified as playing an important role in the development of diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, and Richter syndrome (RS). Our aim was to investigate the different expression profiles in de novo DLBCL, transformed follicular lymphoma (tFL), and RS. Here, we profiled the mRNA expression levels of 18 chemokine receptors (CCR1CCR9, CXCR1CXCR7, CX3CR1 and XCR1) using RQ-PCR, as well as immunohistochemistry of seven chemokine receptors (CCR1, CCR4–CCR8 and CXCR2) in RS, de novo DLBCL, and tFL biopsy-derived tissues. Tonsil-derived germinal center B-cells (GC-B) served as non-neoplastic controls. The chemokine receptor expression profiles of de novo DLBCL and tFL substantially differed from those of GC-B, with at least 5-fold higher expression of 15 out of the 18 investigated chemokine receptors (CCR1CCR9, CXCR1, CXCR2, CXCR6, CXCR7, CX3CR1 and XCR1) in these lymphoma subtypes. Interestingly, the de novo DLBCL and tFL exhibited at least 22-fold higher expression of CCR1, CCR5, CCR8, and CXCR6 compared with RS, whereas no significant difference in chemokine receptor expression profile was detected when comparing de novo DLBCL with tFL. Furthermore, in de novo DLBCL and tFLs, a high expression of CCR7 was associated with a poor overall survival in our study cohort, as well as in an independent patient cohort. Our data indicate that the chemokine receptor expression profile of RS differs substantially from that of de novo DLBCL and tFL. Thus, these multiple dysregulated chemokine receptors could represent novel clinical markers as diagnostic and prognostic tools. Moreover, this study highlights the relevance of chemokine signaling crosstalk in the tumor microenvironment of aggressive lymphomas.  相似文献   

6.
Chemokine signaling is a well-known agent of autoimmune disease, HIV infection, and cancer. Drug discovery efforts for these signaling molecules have focused on developing inhibitors targeting their associated G protein-coupled receptors. Recently, we used a structure-based approach directed at the sulfotyrosine-binding pocket of the chemokine CXCL12, and thereby demonstrated that small molecule inhibitors acting upon the chemokine ligand form an alternative therapeutic avenue. Although the 50 members of the chemokine family share varying degrees of sequence homology (some as little as 20%), all members retain the canonical chemokine fold. Here we show that an equivalent sulfotyrosine-binding pocket appears to be conserved across the chemokine superfamily. We monitored sulfotyrosine binding to four representative chemokines by NMR. The results suggest that most chemokines harbor a sulfotyrosine recognition site analogous to the cleft on CXCL12 that binds sulfotyrosine 21 of the receptor CXCR4. Rational drug discovery efforts targeting these sites may be useful in the development of specific as well as broad-spectrum chemokine inhibitors.  相似文献   

7.
8.
9.
Gastric cancer (GC) is the fifth most common cancer worldwide and the second leading cause of cancer-related death. GC is usually diagnosed at an advanced stage due to late presentation of symptoms. Therefore, there is a need for establishing more sensitive and specific markers useful in early detection of the disease when a cancer is asymptomatic to improve the diagnostic and clinical decision-making process. Some researchers suggest that chemokines and their specific receptors play an important role in GC initiation and progression via promotion of angiogenesis, tumor transformation, invasion, survival and metastasis as well as protection from host response and inter-cell communication. Chemokines are small proteins produced by various cells such as endothelial cells, fibroblasts, leukocytes, and epithelial and tumor cells. According to our knowledge, the significance of chemokines and their specific receptors in diagnosing GC and evaluating its progression has not been fully elucidated. The present article offers a review of current knowledge on general characteristics of chemokines, specific receptors and their role in GC pathogenesis as well as their potential usefulness as novel biomarkers for GC.  相似文献   

10.
11.
Over the last decade, functional selectivity (or ligand bias) has evolved from being a peculiar phenomenon to being recognized as an essential feature of synthetic ligands that target G protein‐coupled receptors (GPCRs). The CXC chemokine receptor 3 (CXCR3) is an outstanding platform to study various aspects of biased signaling, because nature itself uses functional selectivity to manipulate receptor signaling. At the same time, CXCR3 is an attractive therapeutic target in the treatment of autoimmune diseases and cancer. Herein we report the discovery of an 8‐azaquinazolinone derivative (N‐{1‐[3‐(4‐ethoxyphenyl)‐4‐oxo‐3,4‐dihydropyrido[2,3‐d]pyrimidin‐2‐yl]ethyl}‐4‐(4‐fluorobutoxy)‐N‐[(1‐methylpiperidin‐4‐yl)methyl]butanamide, 1 b ) that can inhibit CXC chemokine 11 (CXCL11)‐dependent G protein activation over β‐arrestin recruitment with 187‐fold selectivity. This compound also demonstrates probe‐dependent activity, that is, it inhibits CXCL11‐ over CXCL10‐mediated G protein activation with 12‐fold selectivity. Together with a previously reported biased negative allosteric modulator from our group, the present study provides additional information on the molecular requirements for allosteric modulation of CXCR3.  相似文献   

12.
Chemokines secreted from stromal cells have important roles for interactions with carcinoma cells and regulating tumor progression. C-C motif chemokine ligand (CCL) 5 is expressed in various types of stromal cells and associated with tumor progression, interacting with C-C chemokine receptor (CCR) 1, 3 and 5 expressed in tumor cells. However, the expression on CCL5 and its receptors have so far not been well-examined in human breast carcinoma tissues. We therefore immunolocalized CCL5, as well as CCR1, 3 and 5, in 111 human breast carcinoma tissues and correlated them with clinicopathological characteristics. Stromal CCL5 immunoreactivity was significantly correlated with the aggressive phenotype of breast carcinomas. Importantly, this tendency was observed especially in the CCR3-positive group. Furthermore, the risk of recurrence was significantly higher in the patients with breast carcinomas positive for CCL5 and CCR3 but negative for CCR1 and CCR5, as compared with other patients. In summary, the CCL5-CCR3 axis might contribute to a worse prognosis in breast cancer patients, and these findings will contribute to a better understanding of the significance of the CCL5/CCRs axis in breast carcinoma microenvironment.  相似文献   

13.
Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The purposes of this study were to further explore the effects of HBOT on the neurogenesis and the expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague–Dawley rats were divided into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO). HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT during the experiment. After the final intervention, half of the rats in each group were cardio-perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were removed, dehydrated and cut into serial 20μm coronal sections for immunofluorescence staining to detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The affected motor cortex of the other half rats in each group was separated under anesthesia and used to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor function was tested by a ladder-climbing test before and after the experiment. HBOT significantly enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4. The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations in the penumbra were all significantly increased in the HBO group when compared with the control group. The motor functions were improved in both groups, but there was a significant difference between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also increased BDNF expression, which might further promote the reconstructions of the impaired neural networks and restore motor function.  相似文献   

14.
15.
Strategies for the identification of allosteric modulators of chemokine receptors largely rely on various cell‐based functional assays. Radioligand binding assays are typically not available for allosteric binding sites. We synthesized, purified, and applied the first tritium‐labeled allosteric modulator of the human chemokine receptor CXCR3 (RAMX3, [3H]N‐{1‐[3‐(4‐ethoxyphenyl)‐4‐oxo‐3,4‐dihydropyrido[2,3‐d]pyrimidin‐2‐yl]ethyl}‐2‐[4‐fluoro‐3‐(trifluoromethyl)phenyl]‐N‐[(1‐methylpiperidin‐4‐yl)methyl]acetamide). RAMX3 is chemically derived from 8‐azaquinazolinone‐type allosteric modulators and binds to the CXCR3 receptor with a Kd value of 1.08 nM (specific activity: 80.4 Ci mmol?1). Radioligand displacement assays showed potent negative cooperativity between RAMX3 and chemokine CXCL11, providing a basis for the use of RAMX3 to investigate other potential allosteric modulators. Additionally, the synthesis and characterization of a number of other full and truncated 8‐azaquinazoline analogues were used to validate the binding properties of RAMX3. We demonstrate that RAMX3 can be efficiently used to facilitate the discovery and characterization of small molecules as allosteric modulators of the CXCR3 receptor.  相似文献   

16.
Ovarian carcinoma is the deadliest gynecologic malignancy with very poor rate of survival, and it is characterized by the presence of vast incurable peritoneal metastasis. Studies of the role of chemokine receptors, a family of proteins belonging to the group of G protein-coupled receptors, in ovarian carcinoma strongly placed this family of membrane receptors as major regulators of progression of this malignancy. In this review, we will discuss the roles that chemokine-receptor interactions play to support angiogenesis, cell proliferation, migration, adhesion, invasion, metastasis, and immune evasion in progression of ovarian carcinoma. Data regarding the role that the chemokine receptors play in the disease progression accumulated insofar strongly suggest that this family of proteins could be good therapeutic targets against ovarian carcinoma.  相似文献   

17.
Proprotein convertase subtilin/kexin type 9 (PCSK9) is a protease secreted mainly by hepatocytes and in lesser quantities by intestines, pancreas, and vascular cells. Over the years, this protease has gained importance in the field of cardiovascular biology due to its regulatory action on the low-density lipoprotein receptor (LDLR). However, recently, it has also been shown that PCSK9 acts independent of LDLR to cause vascular inflammation and increase the severity of several cardiovascular disorders. We hypothesized that PCSK9 affects the expression of chemokine receptors, major mediators of inflammation, to influence cardiovascular health. However, using overexpression of PCSK9 in murine models in vivo and PCSK9 stimulation of myeloid and vascular cells in vitro did not reveal influences of PCSK9 on the expression of certain chemokine receptors that are known to be involved in the development and progression of atherosclerosis and vascular inflammation. Hence, we conclude that the inflammatory effects of PCSK9 are not associated with the here investigated chemokine receptors and additional research is required to elucidate which mechanisms mediate PCSK9 effects independent of LDLR.  相似文献   

18.
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine and atypical chemokine with a key role in inflammatory diseases including atherosclerosis. Key atherogenic functions of MIF are mediated by noncognate interaction with the chemokine receptor CXCR2. The MIF N-like loop comprising the sequence 47–56 is an important structural determinant of the MIF/CXCR2 interface and MIF(47–56) blocks atherogenic MIF activities. However, the mechanism and critical structure–activity information within this sequence have remained elusive. Here, we show that MIF(47–56) directly binds to CXCR2 to compete with MIF receptor activation. By using alanine scanning, essential and dispensable residues were identified. Moreover, MIF(cyclo10), a designed cyclized variant of MIF(47–56), inhibited key inflammatory and atherogenic MIF activities in vitro and in vivo/ex vivo, and exhibited strongly improved resistance to proteolytic degradation in human plasma in vitro, thus suggesting that it could serve as a promising basis for MIF-derived anti-atherosclerotic peptides.  相似文献   

19.
The major invasive subtype of kidney cancer is renal cell carcinoma (RCC). The essential components of cancer development are chronic inflammation and neoangiogenesis. It has been suggested that the chemokine ligand 9, -10, –11 (CXCL9–11) and chemokine receptor 3 (CXCR3) chemokines receptor expressed on monocytes, T and NK cells may be involved in the inhibition of angiogenesis. However, to date, little is known about the potential clinical significance of these chemokines and their receptor in renal cell carcinoma. Therefore, in this review, we described the role of CXCR3 and its ligands in pathogenesis of RCC. We performed an extensive search of the current literature in our investigation, using the MEDLINE/PubMed database. The changes of chemokines and their specific receptor in renal cell carcinoma were observed. Published studies revealed an increased expression of CXCR3 and elevated concentration of its ligands in RCC. The association between treatment of RCC and CXCL9–11/CXCR3 concentration and expression was also observed. Moreover, CXCR3 and its ligands levels were related to patient’s prognosis, risk of metastasis and tumor growth. This review describes the potential role of CXCR3 and its ligands in pathogenesis of RCC, as well as their potential immune-therapeutic significance. However, future studies should aim to confirm the clinical and prognostic role of CXCL9–11/CXCR3 in renal cell carcinoma.  相似文献   

20.
Epithelial ovarian cancer (EOC) is one of the leading causes of cancer deaths in women worldwide. Ubiquitin-conjugating enzyme 9 (Ubc9), the sole conjugating enzyme for sumoylation, regulates protein function and plays an important role in sumoylation-mediated cellular pathways. Although sumoylation plays a key role in DNA repair and tumorgenesis, whether Ubc9 is involved in EOC progression remains unknown. In the present study, we constructed Ubc-9 expressed recombined plasmid pEGFP-N1-Ubc9. The mRNA levels of Ubc9 were confirmed in human ovarian cell lines before and after transfection with pEGFP-N1-Ubc9 or small interfering RNA (siRNA) targeted Ubc9 by real-time polymerase chain reaction (PCR). The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to observe the effect of Ubc9 on cell proliferation. The protein levels of Ubc9, and proliferation-related signals Akt and physphorylated Akt were determined by Western blot. Our results showed that proliferation of EOC cells increased significantly in Ubc9 overexpressing cells, but decreased in Ubc9 knockdown cells. The physphorylation of Akt showed similar trends. In addition, the inhibitor of PI3K/Akt signaling pathway, LY294002, dramatically inhibited the growth of Ubc9 overexpressing cells. Therefore, Ubc9 gene plays an important role in cell proliferation in EOC through PI3K/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号