首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Esters constitute a broad family of volatile compounds impacting the organoleptic properties of many beverages, including wine and beer. They can be classified according to their chemical structure. Higher alcohol acetates differ from fatty acid ethyl esters, whereas a third group, substituted ethyl esters, contributes to the fruitiness of red wines. Derived from yeast metabolism, the biosynthesis of higher alcohol acetates and fatty acid ethyl esters has been widely investigated at the enzymatic and genetic levels. As previously reported, two pairs of esterases, respectively encoded by the paralogue genes ATF1 and ATF2, and EEB1 and EHT1, are mostly involved in the biosynthesis of higher alcohol acetates and fatty acid ethyl esters. These esterases have a moderate effect on the biosynthesis of substituted ethyl esters, which depend on mono-acyl lipases encoded by MGL2 and YJU3. The functional characterization of such genes helps to improve our understanding of substituted ester metabolism in the context of wine alcohol fermentation. In order to evaluate the overall sensorial impact of esters, we attempted to produce young red wines without esters by generating a multiple esterase-free strain (Δatf1, Δatf2, Δeeb1, and Δeht1). Surprisingly, it was not possible to obtain the deletion of MGL2 in the Δatf1atf2/Δeeb1/Δeht1 background, highlighting unsuspected genetic incompatibilities between ATF1 and MGL2. A preliminary RNA-seq analysis depicted the overall effect of the Δatf1atf2/Δeeb1/Δeht1 genotype that triggers the expression shift of 1124 genes involved in nitrogen and lipid metabolism, but also chromatin organization and histone acetylation. These findings reveal unsuspected regulatory roles of ester metabolism in genome expression for the first time.  相似文献   

2.
Men with nonalcoholic fatty liver disease (NAFLD) are more exposed to nonalcoholic steatohepatitis (NASH) and liver fibrosis than women. However, the underlying molecular mechanisms of NALFD sex dimorphism are unclear. We combined gene expression, histological and lipidomic analyses to systematically compare male and female liver steatosis. We characterized hepatosteatosis in three independent mouse models of NAFLD, ob/ob and lipodystrophic fat-specific (PpargFΔ/Δ) and whole-body PPARγ-null (PpargΔ/Δ) mice. We identified a clear sex dimorphism occurring only in PpargΔ/Δ mice, with females showing macro- and microvesicular hepatosteatosis throughout their entire life, while males had fewer lipid droplets starting from 20 weeks. This sex dimorphism in hepatosteatosis was lost in gonadectomized PpargΔ/Δ mice. Lipidomics revealed hepatic accumulation of short and highly saturated TGs in females, while TGs were enriched in long and unsaturated hydrocarbon chains in males. Strikingly, sex-biased genes were particularly perturbed in both sexes, affecting lipid metabolism, drug metabolism, inflammatory and cellular stress response pathways. Most importantly, we found that the expression of key sex-biased genes was severely affected in all the NAFLD models we tested. Thus, hepatosteatosis strongly affects hepatic sex-biased gene expression. With NAFLD increasing in prevalence, this emphasizes the urgent need to specifically address the consequences of this deregulation in humans.  相似文献   

3.
4.
5.
Boron is an essential element for autoinducer-2 (AI-2) synthesis of quorum sensing (QS) system, which affects bacterial collective behavior. As a living biocatalyst, biofilms can stably catalyze the activity of intracellular enzymes. However, it is unclear how boron affects biofilm formation in E. coli, particularly recombinant E. coli with intracellular enzymes. This study screened different boron derivatives to explore their effect on biofilm formation. The stress response of biofilm formation to boron was illuminated by analyzing AI-2 activity, extracellular polymeric substances (EPS) composition, gene expression levels, etc. Results showed that boron derivatives promote AI-2 activity in QS system. After treatment with H3BO3 (0.6 mM), the AI-2 activity increased by 65.99%, while boron derivatives increased the biomass biofilms in the order H3BO3 > NaBO2 > Na2B4O7 > NaBO3. Moreover, treatment with H3BO3 (0.6 mM) increased biomass by 88.54%. Meanwhile, AI-2 activity had a linear correlation with polysaccharides and protein of EPS at 0–0.6 mM H3BO3 and NaBO2 (R2 > 0.8). Furthermore, H3BO3 upregulated the expression levels of biofilm formation genes, quorum sensing genes, and flagellar movement genes. These findings demonstrated that boron promoted biofilm formation by upregulating the expression levels of biofilm-related genes, improving the QS system AI-2 activity, and increasing EPS secretion in E. coli.  相似文献   

6.
Two morphologically different Aspergillus parasiticus strains, one producing aflatoxins, abundant conidia but few sclerotia (BN9) and the other producing O-methyl-sterimatocystin (OMST), copious sclerotia but a low number of conidia (RH), were used to assess the role of crzA which encodes a putative calcium-signaling pathway regulatory protein. Under standard culture conditions, BN9ΔcrzA mutants conidiated normally but decreased slightly in radial growth, regardless of illumination conditions. RHΔcrzA mutants produced only conidia under light and showed decreased conidiation and delayed sclerotial formation in the dark. Regulation of conidiation of both A. parasiticus strains by light was independent of crzA. Increased concentrations of lithium, sodium, and potassium impaired conidiation and sclerotial formation of the RHΔcrzA mutants but they did not affect conidiation of the BN9ΔcrzA mutants. Vegetative growth and asexual development of both ΔcrzA mutants were hypersensitive to increased calcium concentrations. Calcium supplementation (10 mM) resulted in 3-fold and 2-fold decreases in the relative expression of the endoplasmic reticulum calcium ATPase 2 gene in the BN9 and RH parental strains, respectively, but changes in both ΔcrzA mutants were less significant. Compared to the parental strains, the ΔcrzA mutants barely produced aflatoxins or OMST after the calcium supplementation. The relative expression levels of aflatoxin biosynthesis genes, nor1, ver1, and omtA, in both ΔcrzA mutants were decreased significantly, but the decreases in the parental strains were at much lower extents. CrzA is required for growth and development and for aflatoxin biosynthesis under calcium stress conditions.  相似文献   

7.
To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions—P50S and R310S—in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.  相似文献   

8.
T-2 toxin is mainly produced by Fusarium species, which is an extremely toxic mycotoxin to humans and animals. It is well known that T-2 toxin induces oxidative stress, but the molecular mechanism is still unknown. In this study, we found that T-2 toxin significantly promoted reactive oxygen species (ROS) accumulation in MCF-7 cells at low doses which maintains cell viability at least 80%. Further analysis showed that T-2 toxin downregulated the expression of the master regulator of antioxidant defense gene, nuclear factor erythroid 2-related factor (Nrf2), and its targeted antioxidant genes. Overexpression of Nrf2 or its target gene heme oxygenase 1 (HO1) significantly blocked the ROS accumulation in MCF-7 cells under T-2 toxin treatment. Moreover, we found that T-2 toxin downregulated the antioxidant genes via inducing the expression of ATF3ΔZip2a/2b. Importantly, overexpression of ATF3ΔZip2a/2b promoted the ubiquitination and degradation of Nrf2. Altogether, our results demonstrated that T-2 toxin-induced ROS accumulation via ATF3ΔZip2a/2b mediated ubiquitination and degradation of Nrf2, which provided a new insight into the mechanism of T-2 toxin-induced oxidative stress.  相似文献   

9.
Recently, the xanthophyll carotenoid lutein has been qualified as a potential quorum sensing (QS) and biofilm inhibitor against Pseudomonas aeruginosa. To address the potential of this xanthophyll compound as a relevant antivirulence agent, we investigated in depth its impact on the invasion capabilities and aggressiveness of P. aeruginosa PAO1, which rely on the bacterial ability to build and maintain protective barriers, use different types of motilities and release myriad virulence factors, leading to host cell and tissue damages. Our data, obtained on the PAO1 strain, indicate that all-trans lutein (Lut; 22 µM) disrupts biofilm formation and disorganizes established biofilm structure without affecting bacterial viability, while improving the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Furthermore, this xanthophyll affects PAO1 twitching and swarming motilities while reducing the production of the extracellular virulence factors pyocyanin, elastase and rhamnolipids as well as the expression of the QS-regulated lasB and rhlA genes without inhibiting the QS-independent aceA gene. Interestingly, the expression of the QS regulators rhlR/I and lasR/I is significantly reduced as well as that of the global virulence factor regulator vfr, which is suggested to be a major target of Lut. Finally, an oxidative metabolite of Lut, 3′-dehydrolutein, induces a similar inhibition phenotype. Taken together, lutein-type compounds represent potential agents to control the invasive ability and antibiotic resistance of P. aeruginosa.  相似文献   

10.
11.
12.
Glutaredoxin (Grx) is an important oxidoreductase to maintain the redox homoeostasis of cells. In our previous study, cold-adapted Grx from Psychrobacter sp. ANT206 (PsGrx) has been characterized. Here, we constructed an in-frame deletion mutant of psgrxpsgrx). Mutant Δpsgrx was more sensitive to low temperature, demonstrating that psgrx was conducive to the growth of ANT206. Mutant Δpsgrx also had more malondialdehyde (MDA) and protein carbonylation content, suggesting that PsGrx could play a part in the regulation of tolerance against low temperature. A yeast two-hybrid system was adopted to screen interacting proteins of 26 components. Furthermore, two target proteins, glutathione reductase (GR) and alkyl hydroperoxide reductase subunit C (AhpC), were regulated by PsGrx under low temperature, and the interactions were confirmed via bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP). Moreover, PsGrx could enhance GR activity. trxR expression in Δpsgrx, Δahpc, and ANT206 were illustrated 3.7, 2.4, and 10-fold more than mutant Δpsgrx Δahpc, indicating that PsGrx might increase the expression of trxR by interacting with AhpC. In conclusion, PsGrx may participate in glutathione metabolism and ROS-scavenging by regulating GR and AhpC to protect the growth of ANT206. These findings preliminarily suggest the role of PsGrx in the regulation of oxidative stress, which could improve the low-temperature tolerance of ANT206.  相似文献   

13.
14.
Ion homeostasis is crucial for organism functioning, and its alterations may cause diseases. For example, copper insufficiency and overload are associated with Menkes and Wilson’s diseases, respectively, and iron imbalance is observed in Parkinson’s and Alzheimer’s diseases. To better understand human diseases, Saccharomyces cerevisiae yeast are used as a model organism. In our studies, we used the vps13Δ yeast strain as a model of rare neurological diseases caused by mutations in VPS13AD genes. In this work, we show that overexpression of genes encoding copper transporters, CTR1, CTR3, and CCC2, or the addition of copper salt to the medium, improved functioning of the vps13Δ mutant. We show that their mechanism of action, at least partially, depends on increasing iron content in the cells by the copper-dependent iron uptake system. Finally, we present that treatment with copper ionophores, disulfiram, elesclomol, and sodium pyrithione, also resulted in alleviation of the defects observed in vps13Δ cells. Our study points at copper and iron homeostasis as a potential therapeutic target for further investigation in higher eukaryotic models of VPS13-related diseases.  相似文献   

15.
Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/−) and wild-type (AC3+/+) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.  相似文献   

16.
The aryl hydrocarbon receptor (AHR) regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The AHR repressor (AHRR) is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose) polymerase (TiPARP; ARTD14) also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1) in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs) and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.  相似文献   

17.
18.
Bacteria belonging to the Pectobacterium genus are the causative agents of the blackleg and soft-rot diseases that affect potato plants and tubers worldwide. In Pectobacterium, the expression of the virulence genes is controlled by quorum-sensing (QS) and N-acylhomoserine lactones (AHLs). In this work, we screened a chemical library of QS-inhibitors (QSIs) and AHL-analogs to find novel QSIs targeting the virulence of Pectobacterium. Four N,N′-bisalkylated imidazolium salts were identified as QSIs; they were active at the μM range. In potato tuber assays, two of them were able to decrease the severity of the symptoms provoked by P. atrosepticum. This work extends the range of the QSIs acting on the Pectobacterium-induced soft-rot disease.  相似文献   

19.
Mutations in the gene encoding cardiac myosin-binding protein-C (MyBPC), a thick filament assembly protein that stabilizes sarcomeric structure and regulates cardiac function, are a common cause for the development of hypertrophic cardiomyopathy. About 10% of carriers of the Δ25bp variant of MYBPC3, which is common in individuals from South Asia, are also carriers of the D389V variant on the same allele. Compared with noncarriers and those with MYBPC3Δ25bp alone, indicators for the development of hypertrophic cardiomyopathy occur with increased frequency in MYBPC3Δ25bp/D389V carriers. Residue D389 lies in the IgI-like C2 domain that is part of the N-terminal region of MyBPC. To probe the effects of mutation D389V on structure, thermostability, and protein–protein interactions, we produced and characterized wild-type and mutant constructs corresponding to the isolated 10 kDa C2 domain and a 52 kDa N-terminal fragment that includes subdomains C0 to C2. Our results show marked reductions in the melting temperatures of D389V mutant constructs. Interactions of construct C0–C2 D389V with the cardiac isoforms of myosin-2 and actin remain unchanged. Molecular dynamics simulations reveal changes in the stiffness and conformer dynamics of domain C2 caused by mutation D389V. Our results suggest a pathomechanism for the development of HCM based on the toxic buildup of misfolded protein in young MYBPC3Δ25bp/D389V carriers that is supplanted and enhanced by C-zone haploinsufficiency at older ages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号