首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction. The mechanism of RA pathogenesis is associated with dysregulation of innate and adaptive immunity. Current conventional treatments by steroid drugs, antirheumatic drugs and biological agents are being applied in clinical practice. However, long-term use of these drugs causes side effects, and some RA patients may acquire resistance to these drugs. In this regard, recently investigated MSC-based therapy is considered as a promising approach in RA treatment. In this study, we review conventional and modern treatment approaches, such as MSC-based therapy through the understanding of the link between MSCs and the innate and adaptive immune systems. Moreover, we discuss recent achievements in preclinical and clinical studies as well as various strategies for the enhancement of MSC immunoregulatory properties.  相似文献   

2.
Mesenchymal stem cells (MSCs) from bone marrow appear to be an attractive tool for use in tissue engineering and cell-based therapies due to their multipotent capacity. The majority of studies on MSCs have been restricted to the roles of growth factors, cytokines, and hormones. Based on previous reports demonstrating the important roles of amino acids, we sought to evaluate the effect of essential amino acids (EAs) and nonessential amino acids (NEAs) on the proliferation and differentiation of MSCs. The results showed that the EA/NEA compositions during culture could significantly modulate MSC proliferation and differentiation and, especially, that EAs served as a potent positive modulator in the proliferation of MSCs without causing a deficit in the differentiation capacity of the cells. These results will be very useful in the production of MSC-based cell therapy products for use in the field of tissue engineering and regenerative medicine.  相似文献   

3.
Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant‐based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting‐edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.  相似文献   

4.
Metastasis to the central nervous system remains difficult to treat, and such patients are faced with a dismal prognosis. The blood-brain barrier (BBB), despite being partially compromised within malignant lesions in the brain, still retains much of its barrier function and prevents most chemotherapeutic agents from effectively reaching the tumor cells. Here, we review some of the recent developments aimed at overcoming this obstacle in order to more effectively deliver chemotherapeutic agents to the intracranial tumor site. These advances include intranasal delivery to achieve direct nose-to-brain transport of anticancer agents and covalent modification of existing drugs to support enhanced penetration of the BBB. In both of these areas, use of the natural product perillyl alcohol, a monoterpene with anticancer properties, contributed to promising new results, which will be discussed here.  相似文献   

5.
Mesenchymal stem cells (MSCs) are self-renewable, multipotent stem cells that regulate the phenotype and function of all immune cells that participate in anti-tumor immunity. MSCs modulate the antigen-presenting properties of dendritic cells, affect chemokine and cytokine production in macrophages and CD4+ T helper cells, alter the cytotoxicity of CD8+ T lymphocytes and natural killer cells and regulate the generation and expansion of myeloid-derived suppressor cells and T regulatory cells. As plastic cells, MSCs adopt their phenotype and function according to the cytokine profile of neighboring tumor-infiltrated immune cells. Depending on the tumor microenvironment to which they are exposed, MSCs may obtain pro- and anti-tumorigenic phenotypes and may enhance or suppress tumor growth. Due to their tumor-homing properties, MSCs and their exosomes may be used as vehicles for delivering anti-tumorigenic agents in tumor cells, attenuating their viability and invasive characteristics. Since many factors affect the phenotype and function of MSCs in the tumor microenvironment, a better understanding of signaling pathways that regulate the cross-talk between MSCs, immune cells and tumor cells will pave the way for the clinical use of MSCs in cancer immunotherapy. In this review article, we summarize current knowledge on the molecular and cellular mechanisms that are responsible for the MSC-dependent modulation of the anti-tumor immune response and we discuss different insights regarding therapeutic potential of MSCs in the therapy of malignant diseases.  相似文献   

6.
Many clinical studies utilizing MSCs (mesenchymal stem cells, mesenchymal stromal cells, or multipotential stromal cells) are underway in multiple clinical settings; however, the ideal approach to prepare these cells in vitro and to deliver them to injury sites in vivo with maximal effectiveness remains a challenge. Here, pretreating MSCs with agents that block the apoptotic pathways were compared with untreated MSCs. The treatment effects were evaluated in the myocardial infarct setting following direct injection, and physiological parameters were examined at 4 weeks post-infarct in a rat permanent ligation model. The prosurvival treated MSCs were detected in the hearts in greater abundance at 1 week and 4 weeks than the untreated MSCs. The untreated MSCs improved ejection fraction in infarcted hearts from 61% to 77% and the prosurvival treated MSCs further improved ejection fraction to 83% of normal. The untreated MSCs improved fractional shortening in the infarcted heart from 52% to 68%, and the prosurvival treated MSCs further improved fractional shortening to 77% of normal. Further improvements in survival of the MSC dose seems possible. Thus, pretreating MSCs for improved in vivo survival has implications for MSC-based cardiac therapies and in other indications where improved cell survival may improve effectiveness.  相似文献   

7.
喹唑啉是一类具有广泛生物活性的杂环结构母体,在喹唑啉骨架中引入不同的基团,能产生一系列具有抗癌活性的喹唑啉类衍生物。文中按照喹唑啉结构的不同类型,分别综述了氨基喹唑啉类和喹唑啉(硫)醚类化合物近年来在抗癌方面的研究情况,并对其发展前景进行了展望。  相似文献   

8.
Heteroanalogues of angelicin, pyrrolo[3,2-h]quinazolines, were synthesized with the aim of obtaining new potent photochemotherapeutic agents. Many derivatives caused a significant decrease in cell proliferation in several human tumor cell lines after irradiation with UVA light (GI(50) =15.2-0.2 μM). Their phototoxicity effected apoptosis in Jurkat cells with the involvement of mitochondria (as determined by the loss of mitochondrial membrane potential and production of reactive oxygen species) and lysosomes. The phototoxicity of these compounds could be explained by lipid peroxidation.  相似文献   

9.
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.  相似文献   

10.
The therapeutic activity of most anticancer drugs in clinical use is limited by their general toxicity to proliferating cells, including some normal cells. Although, chemists continue to develop novel cytotoxic agents with unique mechanisms of action, many of these compounds still lack tumor selectivity and have not been therapeutically useful. Monoclonal antibodies that bind to specific markers on the surface of tumor cells offer an alternative therapy that is tumor specific and thus less toxic. Although highly selective, very few monoclonal antibodies are therapeutically useful since they only display modest cell killing activity. The linkage of monoclonal antibodies to highly cytotoxic drugs can be viewed as a means of (a) conferring higher tumor selectivity to cytotoxic drugs that are too toxic to be used on their own or (b) conferring cell killing power to monoclonal antibodies that are tumor-specific but not sufficiently cytotoxic. This Account provides a brief history of the development of antibody-drug conjugates and shows how the lessons learned from the first generation of conjugates has guided the development of more effective antitumor agents. The three components of antibody-drug conjugates, that is, the monoclonal anitbody, the cytotoxic drug, and the linker connecting the drug to the antibody, have been methodically studied and optimized. The antimitotic drug maytansine was chosen for use in the targeted delivery approach because of its high in vitro potency. Analogues of maytansine bearing a disulfide substituent that allowed linkage to monoclonal antibodies via disulfide bonds were prepared. These analogues retain the high potency of the parent drug. The stability of the disulfide link in antibody-maytansinoid conjugates was varied by introduction of methyl substituents on the carbon atoms geminal to the disulfide link. The optimized disulfide linker was stable in circulation in vivo. The circulation half-life of the cytotoxic drug was increased from just a few hours for the unconjugated drug to several days for the conjugate. Upon binding of the conjugate to the tumor cell, internalization and lysosomal processing released the potent cytotoxic agent inside the cell. These conjugates displayed high target-specific cytotoxicity in vitro. The antitumor activity of these targeted agents was superior to that of the antibodies alone or the standard anticancer drugs in human tumor xenograft models. Several conjugates from this new class of tumor-targeted anticancer agents are currrently undergoing clinical evaluation. The progress made in the targeted delivery approach and initial clinical results opens the door to the future development of highly potent drugs that were too toxic on their own to be therapeutically useful.  相似文献   

11.
Osteosarcoma (OS) is an aggressive bone tumor that mainly affects children and adolescents. OS has a strong tendency to relapse and metastasize, resulting in poor prognosis and survival. The high heterogeneity and genetic complexity of OS make it challenging to identify new therapeutic targets. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into adipocytes, osteoblasts, or chondroblasts. OS is thought to originate at some stage in the differentiation process of MSC to pre-osteoblast or from osteoblast precursors. MSCs contribute to OS progression by interacting with tumor cells via paracrine signaling and affect tumor cell proliferation, invasion, angiogenesis, immune response, and metastasis. Extracellular vesicles (EVs), secreted by OS cells and MSCs in the tumor microenvironment, are crucial mediators of intercellular communication, driving OS progression by transferring miRNAs/RNA and proteins to other cells. MSC-derived EVs have both pro-tumor and anti-tumor effects on OS progression. MSC-EVs can be also engineered to deliver anti-tumor cargo to the tumor site, which offers potential applications in MSC-EV-based OS treatment. In this review, we highlight the role of MSCs in OS, with a focus on EV-mediated communication between OS cells and MSCs and their role in OS pathogenesis and therapy.  相似文献   

12.
Epothilones are potent antiproliferative agents, which have served as successful lead structures for anticancer drug discovery. However, their therapeutic efficacy would benefit greatly from an increase in their selectivity for tumor cells, which may be achieved through conjugation with a tumor-targeting moiety. Three novel epothilone analogs bearing variously functionalized benzimidazole side chains were synthesized using a strategy based on palladium-mediated coupling and macrolactonization. The synthesis of these compounds is described and their in vitro biological activity is discussed with respect to their interactions with the tubulin/microtubule system and the inhibition of human cancer cell proliferation. The additional functional groups may be used to synthesize conjugates of epothilone derivatives with a variety of tumor-targeting moieties.  相似文献   

13.
Regenerative medicine is concerned with the investigation of therapeutic agents that can be used to promote the process of regeneration after injury or in different diseases. Mesenchymal stem/stromal cells (MSCs) and their secretome—including extracellular vesicles (EVs) are of great interest, due to their role in tissue regeneration, immunomodulatory capacity and low immunogenicity. So far, clinical studies are not very conclusive as they show conflicting efficacies regarding the use of MSCs. An additional process possibly involved in regeneration might be cell fusion. This process occurs in both a physiological and a pathophysiological context and can be affected by immune response due to inflammation. In this review the role of MSCs and cell fusion in tissue regeneration is discussed.  相似文献   

14.
Carbon nanotubes (CNTs) have emerged as promising drug delivery systems particularly for cancer therapy, due to their abilities to overcome some of the challenges faced by cancer treatment, namely non-specificity, poor permeability into tumour tissues, and poor stability of anticancer drugs. Encapsulation of anticancer agents inside CNTs provides protection from external deactivating agents. However, the open ends of the CNTs leave the encapsulated drugs exposed to the environment and eventually their uncontrolled release before reaching the desired target. In this study, we report the successful encapsulation of cisplatin, a FDA-approved chemotherapeutic drug, into multi-walled carbon nanotubes and the capping at the ends with functionalised gold nanoparticles to achieve a “carbon nanotube bottle” structure. In this proof-of-concept study, these caps did not prevent the encapsulation of drug in the inner space of CNTs; on the contrary, we achieved higher drug loading inside the nanotubes in comparison with data reported in literature. In addition, we demonstrated that encapsulated cisplatin could be delivered in living cells under physiological conditions to exert its pharmacological action.  相似文献   

15.
Many quinazoline derivatives with pharmacological properties, such as anticancer activity, have been synthesized. Fourteen quinazoline derivatives bearing a substituted sulfonamide moiety (4a–n) were previously synthesized and fully characterized. These compounds exerted antiproliferative activity against cell lines derived from solid tumors. Herein, the antileukemic activities of these compounds (4a–n) against two different leukemia cell lines (Jurkat acute T cell and THP-1 acute monocytic) were investigated. Our investigation included examining their activity in vivo in a zebrafish embryo model. Remarkably, compounds 4a and 4d were the most potent in suppressing cell proliferation, with an IC50 value range of 4–6.5 µM. Flow cytometry analysis indicated that both compounds halted cell progression at the G2/M phase and induced apoptosis in a dose-dependent manner. RT-PCR and Western blot analyses also showed that both compounds effectively induced apoptosis by upregulating the expression of proapoptotic factors while downregulating that of antiapoptotic factors. In vivo animal toxicity assays performed in zebrafish embryos indicated that compound 4d was more toxic than compound 4a, with compound 4d inducing multiple levels of teratogenic phenotypes in zebrafish embryos at a sublethal concentration. Moreover, both compounds perturbed the hematopoiesis process in developing zebrafish embryos. Collectively, our data suggest that compounds 4a and 4d have the potential to be used as antileukemic agents.  相似文献   

16.
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor’s resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.  相似文献   

17.
Radiotherapy of head-and-neck squamous cell carcinoma (HNSCC) can cause considerable normal tissue injuries, and mesenchymal stromal cells (MSCs) have been shown to aid regeneration of irradiation-damaged normal tissues. However, utilization of MSC-based treatments for HNSCC patients undergoing radiotherapy is hampered by concerns regarding potential radioprotective effects. We therefore investigated the influence of MSCs on the radiosensitivity of HNSCCs. Several human papillomavirus (HPV)-negative and HPV-positive HNSCCs were co-cultured with human bone marrow-derived MSCs using two-dimensional and three-dimensional assays. Clonogenic survival, proliferation, and viability of HNSCCs after radiotherapy were assessed depending on MSC co-culture. Flow cytometry analyses were conducted to examine the influence of MSCs on irradiation-induced cell cycle distribution and apoptosis induction in HNSCCs. Immunofluorescence stainings of γH2AX were conducted to determine the levels of residual irradiation-induced DNA double-strand breaks. Levels of connective tissue growth factor (CTGF), a multifunctional pro-tumorigenic cytokine, were analyzed using enzyme-linked immunosorbent assays. Neither direct MSC co-culture nor MSC-conditioned medium exerted radioprotective effects on HNSCCs as determined by clonogenic survival, proliferation, and viability assays. Consistently, three-dimensional microwell arrays revealed no radioprotective effects of MSCs. Irradiation resulted in a G2/M arrest of HNSCCs at 96 h independently of MSC co-culture. HNSCCs’ apoptosis rates were increased by irradiation irrespective of MSCs. Numbers of residual γH2AX foci after irradiation with 2 or 8 Gy were comparable between mono- and co-cultures. MSC mono-cultures and HNSCC-MSC co-cultures exhibited comparable CTGF levels. We did not detect radioprotective effects of human MSCs on HNSCCs. Our results suggest that the usage of MSC-based therapies for radiotherapy-related toxicities in HNSCC patients may be safe in the context of absent radioprotection.  相似文献   

18.
Photodynamic therapy (PDT) is currently one of the most promising methods of cancer treatment. However, this method has some limitations, including a small depth of penetration into biological tissues, the low selectivity of accumulation, and hypoxia of the tumor tissues. These disadvantages can be overcome by combining PDT with other methods of treatment, such as radiation therapy, neutron capture therapy, chemotherapy, etc. In this work, potential drugs were obtained for the first time, the molecules of which contain both photodynamic and chemotherapeutic pharmacophores. A derivative of natural bacteriochlorophyll a with a tin IV complex, which has chemotherapeutic activity, acts as an agent for PDT. This work presents an original method for obtaining agents of combined action, the structure of which is confirmed by various physicochemical methods of analysis. The method of molecular modeling was used to investigate the binding of the proposed drugs to DNA. In vitro biological tests were carried out on several lines of tumor cells: Hela, A549, S37, MCF7, and PC-3. It was shown that the proposed conjugates of binary action for some cell lines had a dark cytotoxicity that was significantly higher (8–10 times) than the corresponding metal complexes of amino acids, which was explained by the targeted chemotherapeutic action of the tin (IV) complex due to chlorin. The greatest increase in efficiency relative to the initial dipropoxy-BPI was found for the conjugate with lysine as a chelator of the tin cation relative to cell lines, with the following results: S-37 increased 3-fold, MCF-7 3-fold, and Hela 2.4-fold. The intracellular distribution of the obtained agents was also studied by confocal microscopy and showed a diffuse granular distribution with predominant accumulation in the near nuclear region.  相似文献   

19.
Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.  相似文献   

20.
Photodynamic therapy (PDT) is an innovative, non-invasive and highly selective therapeutic modality for tumours and non-malignant diseases. BODIPY based molecules can function as new generation photosensitizers (PSs) in various PDT applications. Despite numerous conjugated PS systems are available, BODIPYs containing erlotinib lagged behind other photosensitizer units. In this study, smart photosensitizers containing BODIPY, erlotinib and hydrophilic units were prepared for the first time, their physicochemical properties and PDT effects were investigated. Compared with non-halogenated compound, halogenated derivatives possessed much lower fluorescence profile as well as the good ROS generation ability under red light. In vitro PDT studies were performed on both healthy (PNT1a) and prostate cancerous cells (PC3) to determine the selectivity of the compounds on cancerous cells and their effects under light. The halogenated conjugates, exposed to low dose of light illumination exhibited potent activity on cancer cell viability and the calculated IC50 values proved the high phototoxicity of the photosensitizers. It was also determined that the PSs have very low dark toxicity and that the light illumination and ROS formation are required for the initiation of the cell death mechanism. As a result, erlotinib modified BODIPYs could serve as promising agents in anticancer photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号