首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythropoietin-producing human hepatocellular receptors (EPHs) compose the largest known subfamily of receptor tyrosine kinases (RTKs). They bind and interact with the EPH family receptor interacting proteins (ephrins). EPHs/ephrins are implicated in a variety of physiological processes, as well as in cancer pathogenesis. With neoplastic disease remaining a leading cause of death world-wide, the development of novel biomarkers aiding in the field of diagnosis, prognosis, and disease monitoring is of utmost importance. A multitude of studies have proven the association between the expression of members of the EPH/ephrin system and various clinicopathological parameters, including disease stage, tumor histologic grade, and patients’ overall survival. Besides their utilization in timely disease detection and assessment of outcome, EPHs/ephrins could also represent possible novel therapeutic targets. The aim of the current review of the literature was to present the existing data regarding the association between EPH/ephrin system expression and the clinical characteristics of malignant tumors.  相似文献   

2.
Lung cancer (LC) is the leading cause of cancer death in the United States. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest receptor tyrosine kinases (RTKs) family in mammals. EPHs along with their ligands, EPH-family receptor-interacting proteins (ephrins), have been found to be either up- or downregulated in LC cells, hence exhibiting a defining role in LC carcinogenesis and tumor progression. In their capacity as membrane-bound molecules, EPHs/ephrins may represent feasible targets in the context of precision cancer treatment. In order to investigate available therapeutics targeting the EPH/ephrin system in LC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most well-studied EPH/ephrin target in LC treatment. The targeting of EPHA2, EPHA3, EPHA5, EPHA7, EPHB4, EPHB6, ephrin-A1, ephrin-A2, ephrin-B2, and ephrin-B3 in LC cells or xenograft models not only directly correlates with a profound LC suppression but also enriches the effects of well-established therapeutic regimens. However, the sole clinical trial incorporating a NSCLC patient could not describe objective anti-cancer effects after anti-EPHA2 antibody administration. Collectively, EPHs/ephrins seem to represent promising treatment targets in LC. However, large clinical trials still need to be performed, with a view to examining the effects of EPH/ephrin targeting in the clinical setting.  相似文献   

3.
Gynecological cancers represent some of the most common types of malignancy worldwide. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest subfamily of receptor tyrosine kinases, binding membrane-bound proteins called ephrins. EPHs/ephrins exhibit widespread expression in different cell types, playing an important role in carcinogenesis. The aim of the current review was to examine the dysregulation of the EPH/ephrin system in gynecological cancer, clarifying its role in ovarian, endometrial, and cervical carcinogenesis. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms ephrin, ephrin receptor, ovarian cancer, endometrial cancer, and cervical cancer were employed and we were able to identify 57 studies focused on gynecological cancer and published between 2001 and 2021. All researched ephrins seemed to be upregulated in gynecological cancer, whereas EPHs showed either significant overexpression or extensive loss of expression in gynecological tumors, depending on the particular receptor. EPHA2, the most extensively studied EPH in ovarian cancer, exhibited overexpression both in ovarian carcinoma cell lines and patient tissue samples, while EPHB4 was found to be upregulated in endometrial cancer in a series of studies. EPHs/ephrins were shown to exert their role in different stages of gynecological cancer and to influence various clinicopathological parameters. The analysis of patients’ gynecological cancer tissue samples, most importantly, revealed the significant role of the EPH/ephrin system in the development and progression of gynecological cancer, as well as overall patient survival. In conclusion, the EPH/ephrin system represents a large family of biomolecules with promising applications in the fields of diagnosis, prognosis, disease monitoring, and treatment of gynecological cancer, with an established important clinical impact.  相似文献   

4.
Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell–cell and cell–substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.  相似文献   

5.
Exosomes are cell-secreted nanoparticles containing various molecules including small vesicles, microRNAs (miRNAs), messenger RNAs or bioactive proteins which are thought to be of paramount importance for intercellular communication. The unique effects of exosomes in terms of cell penetration capacity, decreased immunogenicity and inherent stability, along with their key role in mediating information exchange among tumor cells and their surrounding tumor microenvironment (TME), render them a promising platform for drug targeted delivery. Compared to synthetic drugs, exosomes boast a plethora of advantages, including higher biocompatibility, lower toxicity and increased ability of tissue infiltration. Nevertheless, the use of artificial exosomes can be limited in practice, partly due to their poor targeting ability and partly due to their limited efficacy. Therefore, efforts have been made to engineer stem cell-derived exosomes in order to increase selectiveness and effectivity, which can then become loaded with various active substances depending on the therapeutic approach followed. Erythropoietin-producing human hepatocellular receptors (EPHs), along with their ligands, the EPH family receptor interacting proteins (ephrins), have been extensively investigated for their key roles in both physiology and cancer pathogenesis. EPHs/ephrins exhibit both tumorigenic and tumor suppressing properties, with their targeting representing a promising, novel therapeutic approach in cancer patients’ management. In our review, the use of ephrin-loaded exosomes as a potential therapeutic targeted delivery system in cancer will be discussed.  相似文献   

6.
Colorectal cancer (CRC) remains a leading cause of cancer death. Nanotechnology has focused on reaching more effective treatments. In this concern, magnetic nanoparticles (MNPs) have been studied for a wide range of biomedical applications related to CRC, such as diagnostic imaging, drug delivery and thermal therapy. However, limited research is currently found in the open literature that refers to nanosystems combining all these mentioned areas (theranostics). When developing nanosystems intended as theranostics applied to CRC, possible variations between patients must be considered. Therefore, multiple in vitro assays are required as guidance for future preclinical and clinical trials. The objective of this contribution is to evaluate the available and recent literature regarding the interactions of MNP and CRC models, aiming to critically analyze the information given by the commonly used assays and evaluate the data provided by each one with a view to implementing this novel technology in CRC diagnostics and therapy.  相似文献   

7.
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer. In this review, we summarized existing studies describing MNPs that were found to have an effect on CRC and PC, and we discussed the potential mechanisms of action of MNPs as well as future prospects for their use in treating these cancers.  相似文献   

8.
Ferroptosis is a novel form of regulated cell death (RCD) that is typically accompanied by iron accumulation and lipid peroxidation. In contrast to apoptosis, autophagy, and necroptosis, ferroptosis has unique biological processes and pathophysiological characteristics. Since it was first proposed in 2012, ferroptosis has attracted attention worldwide. Ferroptosis is involved in the progression of multiple diseases and could be a novel therapeutic target in the future. Recently, tremendous progress has been made regarding ferroptosis and gastrointestinal diseases, including intestinal ischemia/reperfusion (I/R) injury, inflammatory bowel disease (IBD), gastric cancer (GC), and colorectal cancer (CRC). In this review, we summarize the recent progress on ferroptosis and its interaction with gastrointestinal diseases. Understanding the role of ferroptosis in gastrointestinal disease pathogenesis could provide novel therapeutic targets for clinical treatment.  相似文献   

9.
Colorectal cancer (CRC) remains one of the deadliest malignancies worldwide despite recent progress in treatment strategies. Though immune checkpoint inhibition has proven effective for a number of other tumors, it offers benefits in only a small group of CRC patients with high microsatellite instability. In general, heterogenous cell groups in the tumor microenvironment are considered as the major barrier for unveiling the causes of low immune response. Therefore, deconvolution of cellular components in highly heterogeneous microenvironments is crucial for understanding the immune contexture of cancer. In this review, we assimilate current knowledge and recent studies examining anti-tumor immunity in CRC. We also discuss the utilization of novel immune contexture assessment methods that have not been used in CRC research to date.  相似文献   

10.
Colorectal Cancer (CRC) is one of the deadliest cancers—ranking as the fourth most common cause of cancer-related deaths in the world. It is such a deadly disease because it is largely asymptomatic until the latter stages—oftentimes when the cancer has metastasized. Thus, a huge emphasis of cancer treatment is placed on early detection. Currently, there is a lack of a noninvasive, reliable, and cost-effective screening method for CRC. In recent years, microRNA (miRNA) diagnostic markers have been suggested as a viable new screening method for CRC. miRNAs play an important role in carcinogenesis, and has been observed to be dysregulated in many cancers including CRC. This review examines the diagnostic potential of circulatory and fecal miRNA markers in relation to CRC, as well as current techniques to detect them.  相似文献   

11.
Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily, interacts with its functional death receptors (DRs) and induces apoptosis in a wide range of cancer cell types. Therefore, TRAIL has been considered as an attractive agent for cancer therapy. However, many cancers are resistant to TRAIL-based therapies mainly due to the reduced expression of DRs and/or up-regulation of TRAIL pathway-related anti-apoptotic proteins. Compounds that revert such defects restore the sensitivity of cancer cells to TRAIL, suggesting that combined therapies could help manage neoplastic patients. In this article, we will focus on the TRAIL-sensitizing effects of natural products and synthetic compounds in colorectal cancer (CRC) cells and discuss the molecular mechanisms by which such agents enhance the response of CRC cells to TRAIL.  相似文献   

12.
Aspirin, synthesized and marketed in 1897 by Bayer, is one of the most widely used drugs in the world. It has a well-recognized role in decreasing inflammation, pain and fever, and in the prevention of thrombotic cardiovascular diseases. Its anti-inflammatory and cardio-protective actions have been well studied and occur through inhibition of cyclooxygenases (COX). Interestingly, a vast amount of epidemiological, preclinical and clinical studies have revealed aspirin as a promising chemopreventive agent, particularly against colorectal cancers (CRC); however, the primary mechanism by which it decreases the occurrences of CRC has still not been established. Numerous mechanisms have been proposed for aspirin’s chemopreventive properties among which the inhibition of COX enzymes has been widely discussed. Despite the wide attention COX-inhibition has received as the most probable mechanism of cancer prevention by aspirin, it is clear that aspirin targets many other proteins and pathways, suggesting that these extra-COX targets may also be equally important in preventing CRC. In this review, we discuss the COX-dependent and -independent pathways described in literature for aspirin’s anti-cancer effects and highlight the strengths and limitations of the proposed mechanisms. Additionally, we emphasize the potential role of the metabolites of aspirin and salicylic acid (generated in the gut through microbial biotransformation) in contributing to aspirin’s chemopreventive actions. We suggest that the preferential chemopreventive effect of aspirin against CRC may be related to direct exposure of aspirin/salicylic acid or its metabolites to the colorectal tissues. Future investigations should shed light on the role of aspirin, its metabolites and the role of the gut microbiota in cancer prevention against CRC.  相似文献   

13.
乙二醇单苯醚杀菌剂具有高效、安全、低毒、无刺激、无污染的特性,由于其对绿脓杆菌有特殊的杀菌和抑菌性,对革兰氏阳性菌和革兰氏阴性菌有杀菌和抑菌作用,被作为杀菌剂和防腐剂广泛应用于洗涤用品和化妆品中。举例叙述乙二醇单苯醚在洗涤用品和化妆品中添加后,能杀菌、除臭、止痒、防腐。在美国、日本的化妆品市场,至今仍将乙二醇单苯醚作为重要的杀菌剂。近几年也有国内日化用品企业开始使用乙二醇单苯醚。  相似文献   

14.
Colorectal cancer (CRC) is one of the most common cancers worldwide and a longstanding critical challenge for public health. Screening has been suggested to effectively reduce both the incidence and mortality of CRC. However, the drawback of the current screening modalities, both stool-based tests and colonoscopies, is limited screening adherence, which reduces the effectiveness of CRC screening. Blood tests are more acceptable than stool tests or colonoscopy as a first-line screening approach. Therefore, identifying blood biomarkers for detecting CRC and its precancerous neoplasms is urgently needed to fulfill the unmet clinical need. Currently, many kinds of blood contents, such as circulating tumor cells, circulating tumor nucleic acids, and extracellular vesicles, have been investigated as biomarkers for CRC detection. Among these, small extracellular vesicles (sEVs) have been demonstrated to detect CRC effectively in recent reports. sEVs enable intercellular shuttling—for instance, trafficking between recipient cancer cells and stromal cells—which can affect tumor initiation, proliferation, angiogenesis, immune regulation; metastasis, the cancer-specific molecules, such as proteins, microRNAs, long noncoding RNAs, and circular RNAs, loaded into cancer-derived sEVs may serve as biomarkers for the detection of cancers, including CRC. Indeed, accumulating evidence has shown that nucleic acids and proteins contained in CRC-derived sEVs are effective as blood biomarkers for CRC detection. However, investigations of the performance of sEVs for diagnosing CRC in clinical trials remains limited. Thus, the effectiveness of sEV biomarkers for diagnosing CRC needs further validation in clinical trials.  相似文献   

15.
Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interesting agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.  相似文献   

16.
Non-coding RNAs (ncRNAs) have recently gained attention because of their involvement in different biological processes. An increasing number of studies have demonstrated that mutations or abnormal expression of ncRNAs are closely associated with various diseases including cancer. The present review is a comprehensive examination of the aberrant regulation of ncRNAs in colorectal cancer (CRC) and a summary of the current findings on ncRNAs, including long ncRNAs, microRNAs, small interfering RNAs, small nucleolar RNAs, small nuclear RNAs, Piwi-interacting RNAs, and circular RNAs. These ncRNAs might become novel biomarkers and targets as well as potential therapeutic tools for the treatment of CRC in the near future and this review may provide important clues for further research on CRC and for the selection of effective therapeutic targets.  相似文献   

17.
Background: Colorectal cancer (CRC) is one of the most common types of cancer diagnosed worldwide with high morbidity; drug resistance is often responsible for treatment failure in CRC. Non-coding RNAs (ncRNAs) play distinct regulatory roles in tumorigenesis, cancer progression and chemoresistance. Methods: A literature search was conducted in PubMed database in order to sum up and discuss the role of exosomal ncRNAs (ex-ncRNAs) in CRC drug resistance/response and their possible mechanisms. Results: Thirty-six (36) original research articles were identified; these included exosome or extracellular vesicle (EV)-containing microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and small-interfering (siRNAs). No studies were found for piwi-interacting RNAs. Conclusions: Exosomal transfer of ncRNAs has been documented as a new mechanism of CRC drug resistance. Despite being in its infancy, it has emerged as a promising field for research in order to (i) discover novel biomarkers for therapy monitoring and/or (ii) reverse drug desensitization.  相似文献   

18.
Approximately 25% of colorectal cancer (CRC) patients develop peritoneal metastasis, a condition associated with a bleak prognosis. The CRC peritoneal dissemination cascade involves the shedding of cancer cells from the primary tumor, their transport through the peritoneal cavity, their adhesion to the peritoneal mesothelial cells (PMCs) that line all peritoneal organs, and invasion of cancer cells through this mesothelial cell barrier and underlying stroma to establish new metastatic foci. Exosomes produced by cancer cells have been shown to influence many processes related to cancer progression and metastasis. In epithelial ovarian cancer these extracellular vesicles (EVs) have been shown to favor different steps of the peritoneal dissemination cascade by changing the functional phenotype of cancer cells and PMCs. Little is currently known, however, about the roles played by exosomes in the pathogenesis and peritoneal metastasis cascade of CRC and especially about the molecules that mediate their interaction and uptake by target PMCs and tumor cells. We isolated exosomes by size−exclusion chromatography from CRC cells and performed cell-adhesion assays to immobilized exosomes in the presence of blocking antibodies against surface proteins and measured the uptake of fluorescently-labelled exosomes. We report here that the interaction between integrin α5β1 on CRC cells (and PMCs) and its ligand ADAM17 on exosomes mediated the binding and uptake of CRC-derived exosomes. Furthermore, this process was negatively regulated by the expression of tetraspanin CD9 on exosomes.  相似文献   

19.
Matrix metalloproteinases (MMPs) play an important role in the degradation of extracellular matrix components crucial for tumor growth, invasion and metastasis. MMPs are controlled by natural inhibitors called tissue inhibitors of metalloproteinases (TIMPs). We and others have demonstrated that MMPs and TIMPs are especially important in the process of tumor invasion, progression and the metastasis of colorectal cancer (CRC). It has been proposed that MMPs and TIMPs might play a part not only in tumor invasion and initiation of metastasis but also in carcinogenesis from colorectal adenomas. Several recent studies demonstrated that high preoperative serum or plasma MMP-2, MMP-9 and TIMP-1 antigen levels are strong predictive factors for poor prognosis in patients with CRC and their determination might be useful for identification of patients with higher risk for cancer recurrence. MMP-9 and TIMP-1 have significant potential tumor marker impact in CRC. Their diagnostic sensitivity is consistently higher than those of conventional biomarkers. The pharmacological targeting of CRC by the development of a new generation of selective inhibitors of MMPs, that is highly specific for certain MMPs, is a promising and challenging area for the future.  相似文献   

20.
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号