首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
为了解决样本不平衡带来的评估倾向性问题,从深度学习模型的损失函数出发,分析样本不平衡对评估模型的影响,发现训练过程中的损失函数值能够反映样本的不平衡程度,由此提出基于样本后验分布信息的代价敏感修正方法.通过预先训练获得样本的后验分布信息,引入稳定样本与不稳定样本的损失函数均值比得到修正系数;将修正系数通过代价敏感法修正...  相似文献   

2.
电力系统稳定样本与失稳样本的失衡会导致数据驱动型暂稳评估模型对失稳样本的漏分率增加,由于失稳样本漏判的代价远高于稳定样本误判的代价,因此提出一种引入代价敏感机制的AC-LSTM电力系统暂态稳定评估模型。通过改进Adaboost算法,引入代价敏感函数对样本权重进行更新,更好地考虑了少数类样本对整体分类准确率的影响,降低不稳定样本的漏分率。并进一步将改进的Adaboost算法和长短期记忆网络(longshort-term memory, LSTM)相结合以提高分类器的综合性能。在IEEE39和IEEE140节点系统上的仿真结果表明,所提模型较其他模型具有良好的适应性和泛化能力,提升了评估模型的综合性能,其抗噪能力也优于其他模型。  相似文献   

3.
对于电力系统暂态稳定评估而言,在故障清除后的早期阶段,临界样本间的特征差异不明显,预测准确率低。随着时间推移,准确率提高,但难以保证评估的及时性。针对暂态稳定评估的评估准确性与及时性之间的矛盾,提出了基于集成学习的时间自适应电力系统暂态稳定评估方法。首先,通过EasyEnsemble算法对不平衡数据进行采样,训练出多个不同评估时刻的集成长短期记忆网络分类器,输出样本在不同评估时刻的稳定性预测结果。其次,将评估时刻进行划分,提出了多阶段阈值分类规则,自适应调整阈值,对样本预测结果进行可信度评估。最后,预测结果评估为不可信的样本交由下一评估时刻的模型继续判断,直到可信度达到阈值后输出。在IEEE 39节点系统的仿真结果表明,所提方法相较于其他时间自适应方法具有更优的评估性能,在样本不平衡的情况下该方法实现了更好的修正效果。  相似文献   

4.
针对传统深度学习方法评估电力系统暂态稳定时没有考虑电力系统物理特性的问题,提出一种考虑系统惯量中心频率偏移量的电力系统暂态稳定评估方法.通过计算电力系统故障后的惯量中心频率偏移量,将样本进行分类,分别用堆叠稀疏自编码器进行训练.当系统网架结构发生改变时,采用迁移成分分析法结合惯量中心频率偏移量对分类器进行更新.通过新英...  相似文献   

5.
深度学习模型凭借其良好的性能被引入到电力系统的暂态稳定性评估中,但进行在线应用时,须关注模型的抗噪能力和泛化能力。文中提出一种基于堆叠稀疏降噪自编码器(SSDAE)的暂态稳定性评估模型,首先对原始输入数据加入噪声得到受损数据样本,然后对受损数据样本进行高阶特征提取,最后将提取的高阶特征重构成未受损的数据,这一训练过程大大提高了模型的抗噪能力。同时,在对输入特征进行重构的过程中,对隐藏层神经元权重和激活程度进行抑制,实现模型的稀疏化,以此提高模型的泛化能力。仿真结果表明,相对于其他机器学习算法,SSDAE模型具有良好的抗噪能力和泛化能力。  相似文献   

6.
交直流混联系统的稳定性分析复杂且样本不平衡,当前基于数据挖掘的暂态稳定评估方法只追求对不稳定样本的识别精度,忽略了重叠区域样本难分类的问题,导致其综合性能未得到实质性的提升。针对此问题,提出一种计及样本不平衡与重叠的暂态稳定评估方法。所提方法通过焦点损失函数来修正轻梯度提升机(LightGBM),自动根据样本的类别以及是否处于重叠区域中的“灰色地带”赋予其不同的权重,从而优化梯度下降的方向。该方法在提升对不稳定样本识别精度的同时,也减少了对稳定样本的误判。在修改的IEEE 68节点系统和中国某省级电网上的算例表明,所提方法在含有噪声且不平衡的数据集上有良好的评估性能。  相似文献   

7.
为了在电力系统发生暂态故障后能够快速、准确地对系统稳定性进行判断,并解决样本不平衡对模型造成的倾向性问题,提出了一种基于改进损失函数的电力系统暂态稳定集成评估方法.首先,基于故障清除后的短时量测数据,设计了一种结合1维、2维单通道和2维多通道卷积神经网络的集成模型,实现了端对端的抽象特征提取和暂态稳定分类.其次,改进了...  相似文献   

8.
为了提高深度置信网络的评估性能,提出一种基于稀疏降噪自动编码器和深度置信网络相结合的暂态稳定评估方法。首先,构建一组对系统暂态变化敏感且维数与系统规模无关的原始输入特征;其次,通过稀疏降噪自动编码器的无监督学习过程提取输入特征,用得到的权值和偏置初始化深度置信网络;最后,采用“预训练-微调”2种学习方法训练深度置信网络,获得原始输入特征与系统暂态稳定结果之间的映射关系。与采用随机初始化受限玻尔兹曼机的传统深度置信网络相比,本文提出的改进评估方法在一定程度上克服了由于随机初始化导致评估准确率无法达到最优的弊端。在新英格兰10机39节点系统上的仿真结果表明,该方法比常用的机器学习算法和深度置信网络有更好的评估性能,仿真结果还证明了本文所提方法具有良好的特征提取能力。  相似文献   

9.
为有效降低电力系统运行数据中样本不平衡问题对基于机器学习的暂态稳定评估方法分类性能的影响,提出一种基于自适应权重宽度学习系统AW-BLS(adaptive weighted-broad learning system)的电力系统暂态稳定评估方法。首先,在BLS的宽度结构中引入权重因子以改进BLS模型,有效降低了两类样本数量差距对学习过程的影响。然后,利用电力系统故障前的稳态运行数据对AW-BLS模型进行训练。最后,通过算例分析表明,所提方法在数据集存在样本不平衡问题时具有良好的评估准确率,同时还拥有较好的泛化能力。  相似文献   

10.
快速准确地实现暂态稳定评估,是电力系统安全运行的重要保障.近年来迅速发展的深度学习技术已经成为解决这一问题的有效手段,然而基于神经网络的深度学习模型存在着调参困难、训练时间长和样本需求量大等缺点.文中将故障切除时刻系统的物理量作为输入特征,以系统的暂态稳定状态作为输出结果,采用集成决策树方法,构建了基于深度森林的电力系...  相似文献   

11.
基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自动编码器的暂态稳定评估模型;在传统的三体训练过程中加入伪标签样本置信度判断,以减小噪声数据对模型训练的影响;以堆叠稀疏自动编码器为基分类器构建三体训练-稀疏堆叠自动编码器模型,利用大量的无标签样本提高模型的泛化能力。通过IEEE 39节点系统与华东某省级电网进行分析验证,结果表明,所提方法在有标签样本数较少时具有更高的评估准确度。  相似文献   

12.
深度学习在暂态稳定评估中发挥着越来越重要的作用,然而电网规模逐渐扩大导致数据出现维数灾难,这对模型的性能提出了更高的要求.目前,暂态稳定特征构建需要依靠人工经验,具有主观性;深度学习的模型在设计和训练上耗时、耗力.针对以上两点,结合极限梯度提升(XGBoost)算法和实体嵌入(EE)网络,提出了一种基于XGBoost-...  相似文献   

13.
通过模型的构建和特征量的提取2个方面,提出了一种具有较好抗噪能力的暂态稳定性判别模型。模型的构建采用堆叠变分自动编码器,并在训练过程中引入L2正则化,加强了稳定性判别模型的泛化能力。同时,特征量的提取时刻与传统方法不同,通过设定所有发电机最大功角差值的阈值,当系统发展至该阈值时,进行特征量的提取。在IEEE 39节点系统中进行仿真验证,仿真结果表明,采用上述特征量提取方法,大幅降低了稳定性判别模型的误判率,同时设定合理的阈值并不会影响实时控制措施的启动,加强了模型的抗噪能力。  相似文献   

14.
基于深度学习的暂态稳定评估与严重度分级   总被引:1,自引:0,他引:1  
提出一种安全域概念下的堆叠降噪自动编码器和支持向量机集成模型相结合的暂态稳定评估方法。将故障前的潮流量作为输入,利用堆叠降噪自动编码器对输入量进行多层抽象表达,使用提取的各层特征训练支持向量机;建立支持向量机集成分类模型进行暂态稳定评估,对评估结果进行可信度分析,将输入空间划分为稳定区、边界区和失稳区;利用效用理论结合所提出的暂态稳定裕度指标对运行方式进行严重度分级。算例结果表明,所提暂态稳定评估方法具有更高的评估准确率和一定的泛化能力;所提严重度分级方法能够直观表现不同运行方式的危险程度。  相似文献   

15.
针对不同类型人工智能网络应用于电力系统暂态稳定评估时精度和泛化能力不稳定、运行方式或拓扑结构发生较大变化时评估精度下降、重新训练新模型费时费力等问题,提出一种融合多类型深度迁移学习模型(tmDLM)的自适应评估方法,该方法融合了深度置信网络、卷积神经网络以及长短期记忆网络3种不同的深度学习模型。将训练好的各类深度学习模型作为源域模型,当运行方式或拓扑结构发生较大变化时,采用少量目标域样本集微调预训练模型,使其快速跟踪系统当前的运行状态,并得到tmDLM。新英格兰10机39节点系统和华中电网的仿真结果表明:所提方法可以充分发挥各类深度学习方法的优势,具有良好的泛化能力;六分类模型能够在判稳的同时进行稳定裕度/失稳程度等级的评估;经过迁移后的深度学习模型具有良好的评估精度和时效性,大幅缩短了模型更新时间,实现了电力系统暂态稳定的自适应评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号