首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为分析不同厚度的铝箔吸收层对激光在AZ31B镁合金薄板背面诱导的高应变率冲击波的影响,采用聚偏氟乙烯(PVDF)贴片传感器与数字示波器对强激光诱导的冲击波进行测量,利用测得的不同厚度吸收层下的压电波形,计算转换得到相应的冲击波压力波形。结果表明:铝箔吸收层厚度分别为100μm、200μm、300μm时,激光冲击波压力峰值随着吸收层厚度的增加而降低,冲击波第一个脉冲的脉宽随着吸收层厚度的增加而时间增长,即维持较高压力作用的时间增长;吸收层厚度为100μm时试样表面存在烧蚀损伤现象,吸收层厚度为300μm时,吸收层未完全气化,吸收层厚度为200μm时,冲击波作用的综合优势明显,吸收层过薄或过厚对冲击效果不利。  相似文献   

2.
目的 为了解决选区激光熔化增材再制造时出现的首层铺粉粉层厚度不均的问题,研究首层粉层厚度为400μm时选区激光熔化成形工艺.方法 采用倾斜基板预置楔形粉层,在粉层上进行不同激光功率的激光扫描实验,研究楔形粉层对沉积的影响规律.然后在水平放置的基板上分别预置50、100、200、300、400μm厚度粉层,在粉层上进行激...  相似文献   

3.
利用激光瞬时加热方法制作300M钢烧伤试样,通过调节不同激光加热功率来获得不同程度的烧伤区域,对不同烧伤区域的试样进行不同厚度的镀铬处理。再对试样进行巴克豪森检测,分析不同厚度镀铬层与巴克豪森信号的关系,总结镀铬层对巴克豪森检测灵敏度的影响。结果表明巴克豪森法可以准确地检测镀铬层下烧伤缺陷,检测灵敏度随着镀层厚度的增加逐渐降低,当厚度超过150μm时检测灵敏度严重降低。  相似文献   

4.
目的 深入理解无保护层激光冲击强化(LSPwC)的物理过程。方法 对轧制TA2纯钛板材进行LSPwC处理,通过激光扫描显微镜、X射线应力仪分析试样的表面形貌和残余应力分布,使用透射电子显微镜分析LSPwC后试样表层的微观组织特征。使用Abaqus软件建立LSPwC过程的热力耦合仿真模型,分析试样温度和应力演变规律。结果 当激光脉冲能量为30 mJ、光斑直径为0.4 mm时,经LSPwC处理后TA2试样表面形成了厚度约为50μm的残余拉应力层,其最大残余压应力达到560 MPa,出现在距表面100μm的次表层;经LSPwC处理后TA2试样表面产生了超细马氏体晶,距表面100μm的微观组织表现为高密度位错缠结。随着激光脉冲能量和光斑直径的增大,激光热效应的持续时间增长、热影响深度增大,经LSPwC处理后TA2试样的残余压应力层深度增大。在LSPwC过程中,距表面10.2μm以内深度层的冷却速度超过106℃/s,但冷却速度随着脉冲能量和光斑直径的增大而减小。结论 在LSPwC过程中,激光热效应和激光诱导冲击波作用,导致试样表层迅速升温,并发生塑性变形,然后快速降温,形成...  相似文献   

5.
采用不同的工艺参数,包括渗氮气压、试样与活性屏之间的距离和施加于试样的负偏压,对AISI316奥氏体不锈钢进行了等离子体源渗氮,以研究渗氮工艺对AISI 316不锈钢等离子体源渗氮行为的影响。结果表明:(1)当试样带悬浮电位、渗氮气压为300 Pa时,随着试样与活性屏的间距从20 mm增加至200 mm,渗氮层厚度由18μm减小至7μm,峰值氮浓度从25%降低至17%(原子分数,下同);(2)当试样与活性屏的间距为100 mm时,渗氮气压从300 Pa升高至500 Pa,渗氮层厚度从16μm减少至7.5μm,峰值氮浓度从21%下降至18%;(3)当渗氮气压为300 Pa、试样与活性屏间距为100 mm时,对试样施加200 V负偏压,氮层厚度和峰值氮浓度分别从未施加负偏压的15μm和20%提高到了18μm和24%。AISI 316不锈钢等离子体源渗氮效果随试样与活性屏之间距离的增大而变差,适当降低渗氮气压或对试样施加适当的负偏压,均有助于提高AISI 316不锈钢渗氮层的厚度和氮浓度。  相似文献   

6.
目的更好地理解热障涂层在热循环条件下的失效行为。方法采用有限元方法引入了内聚力模型,研究热障涂层在多次热循环条件下的界面开裂行为,并且考虑了陶瓷层厚度和粘结层厚度对界面开裂行为的影响。结果涂层最先在陶瓷层/TGO层界面的波峰与波谷之间开裂,此外在界面波谷处也存在开裂现象。当陶瓷层厚度在300~500μm范围内,界面裂纹的平均长度随陶瓷层增厚而增长,裂纹密度也随之增加。粘结层厚度为50μm时,界面裂纹的平均长度为15μm;当厚度增加到100μm时,界面裂纹平均长度减少到10μm;而厚度为150μm时,界面裂纹平均长度又提高至12μm。当粘结层与陶瓷层厚度比在0.2~0.4的范围内时,陶瓷层/TGO层界面上的最大拉应力最小。结论陶瓷层厚度和粘结层厚度对热障涂层界面开裂行为的影响极大,小厚度陶瓷层以及当粘结层与陶瓷层厚度比在0.2~0.4的范围内时,热障涂层具有更好的抗界面开裂能力。粘结层厚度不宜过大,超过一定厚度时反而会降低涂层的抗界面开裂能力。计算结果与文献报道的结果相近,证明了模拟结果的准确性。  相似文献   

7.
采用不同功率和脉宽的纳秒脉冲激光,对TC4钛合金表面氧化层(厚度约25μm)进行了激光清洗试验研究,分析了激光能量输入对清洗后表面形貌、粗糙度以及氧化层去除厚度的影响。结果表明:在激光功率300 W、脉宽60 ns条件下能获得较好的清洗效果,且基材未受到明显损伤。相同脉宽下氧化层去除厚度随激光功率的增大而增加,相同激光功率下去除厚度随脉宽的增大先增大后减小。相同脉宽下表面粗糙度随激光功率的增大先减小后增大,在脉宽60 ns、功率300 W条件下粗糙度最小。清洗后的TC4钛合金表面存在纳米级微裂纹,增加脉宽可以有效抑制微裂纹产生。  相似文献   

8.
目的针对曲面材料在激光冲击作用下,表面曲率对激光冲击波传播存在影响,使其残余应力场分布情况不同于平面,分析其形成机理。方法将研究对象设置为凸模型,借助有限元软件ABAQUS,模拟了1500MPa冲击压力下,激光冲击波分别加载1/5、1/10、1/15曲率的7050铝合金试样。设置相应的平面试样作为对照组,并采用相同参数条件进行实验验证。结果当曲率为1/5时,冲击后的材料表面残余应力场分布不均匀,在母线方向的光斑边缘处,残余压应力仅为-237.0 MPa,塑性应变层深为0.5878μm;在圆周方向的光斑边缘处残余压应力为-258.5 MPa,较母线方向增加9.07%,塑性应变层深达到1.235μm,较母线方向增加110.11%。这一现象随着曲率的减小而逐渐消失,当曲率小于1/15时,表面残余应力场分布近似平面。结论激光冲击凸模型时,表面残余压应力场分布存在偏向现象,即试样沿母线方向的残余压应力值小于圆周方向,其对应的塑性应变深度也呈相同的规律。  相似文献   

9.
厚度约为100~300μm的薄膜型稀土磁体,在轻型汽车和电磁器件方面的需求量日益增长。有关400μm厚度的SmFeN粘结磁体和厚度200μm的NdFeB烧结磁体已有所报道。因为机械制造方法对于薄膜磁体表面所造成的损伤缺陷会严重损害其磁性能。另一方面,溅射方法能够制取表面状态良好的薄膜磁体,但难以获得高的沉积速度,脉冲激光沉积法在制备稀土薄膜磁体时虽然沉积速度高但仍难以制备优质的薄膜磁体。  相似文献   

10.
以TC4钛合金为研究对象,基于Johnson-Cook本构模型,分析了高应变率效应对激光喷丸过程中塑性波波速的影响。通过三维有限元方法模拟了不同作用参数激光喷丸诱导冲击波的传播过程,探讨了多次激光喷丸作用后残余压应力饱和现象的产生机理及利用该效应获得均匀表面残余压应力的方法。结果表明:高应变率效应对激光喷丸作用过程中塑性波速度有显著影响,塑性波的速度与所产生的塑性应变呈反比关系。功率密度越大,初始产生的塑性应变越大,塑性波速度越小,冲击波能量衰减越快,冲击波压力幅值降低越快;相同激光喷丸功率密度,随着作用次数的增加,产生的塑性应变逐渐减小,塑性波速度增大,冲击波压力衰减变缓,使激光喷丸诱导的残余压应力逐渐增大;作用次数达到3~4次时,衰减过程基本相似,诱导的残余压应力增幅不大,作用效果基本达到饱和。利用多次激光喷丸作用产生的饱和效应,当激光光斑搭接率超过50%时,即可使搭接区域作用次数达到3次及以上,使激光喷丸作用效果达到饱和,可获得均匀的表面残余压应力。  相似文献   

11.
对1060工业纯铝分别进行室温轧制和深冷轧制,取成品厚度为300、200、100、50和25μm 5组试样进行拉伸试验。结果表明,经过室温轧制的轧件,当其厚度减薄至100μm时出现微尺寸效应,即厚度大于100μm时随厚度减小抗拉强度增大,厚度小于100μm时随厚度减小抗拉强度减小;发现100μm是纯铝室温轧制时出现尺寸效应的临界值。与室温轧制相比,经过深冷轧制轧件微尺寸效应的临界值相同而表现形式不同,厚度小于临界值100μm后其抗拉强度随厚度减小而增加的速度加快。在相同厚度条件下,深冷轧制后的轧件比室温轧制的晶粒内部亚结构更细小,分析认为这是其强度高于室温轧制的一个原因。  相似文献   

12.
田甜  张景泉  黄婷  肖荣诗 《表面技术》2021,50(12):174-180
目的 通过对不同吸收层下飞秒激光冲击后Cu箔的显微组织和力学性能变化分析,选出强化效果更好的吸收层.方法 利用飞秒激光对覆有百纳米厚度吸收层的铜箔(Cu-nm)和覆有百微米厚度吸收层的铜箔(Cu-μm)进行冲击强化,通过扫描电镜、电子背散射衍射仪、X射线衍射仪、显微硬度计对两个样品进行显微组织和力学性能的观测分析.结果 飞秒激光冲击后,Cu-nm主要产生形变孪晶,孪晶比例提高了60.9%,大角度晶界比例提高了12.8%,显微硬度提高了10.8%;Cu-μm主要发生位错变化,位错密度增加16%,小角度晶界比例提高9.8%,显微硬度提高2.2%.除此之外,经飞秒激光冲击后,Cu-nm产生了更大的残余压应力,不仅中和了母材的残余拉应力,还表现为残余压应力;而Cu-μm经飞秒激光冲击后,产生的残余压应力无法完全中和母材的残余拉应力,仍显示为残余拉应力.结论 对比研究得出,飞秒激光冲击Cu-nm后,实现了微观组织孪晶化,改变了残余应力状态,提高了铜箔表面的硬度.  相似文献   

13.
粘结层和陶瓷层厚度对纳米结构热障涂层性能的影响   总被引:2,自引:1,他引:1  
何箐  李嘉  詹华  汪瑞军  王伟平 《表面技术》2013,42(1):17-20,41
采用超音速火焰喷涂+大气等离子喷涂工艺,在K403高温合金表面制备不同层厚比的NiCrA-lY/纳米7YSZ热障涂层,研究了涂层厚度变化对热障涂层表面粗糙度、结合强度、热震性能和热循环寿命的影响规律。结果表明:当粘结层厚度一定时,随着陶瓷层厚度的增加,其表面粗糙度增加,涂层结合强度下降;当粘结层厚度为50μm时,热障涂层的抗热震性能随陶瓷层厚度增加而降低,粘结层厚度提高至100μm时,热障涂层的抗热震性能随陶瓷层厚度增加先提高,后降低,热障涂层在1100℃的热循环寿命测试结果也基本对应这一规律;当粘结层厚50μm且陶瓷层/粘结层的层厚比在(1~2)∶1的范围内,或者粘结层厚100μm且陶瓷层/粘结层的层厚比在(2~2.5)∶1范围内时,热障涂层具有较优异的性能。  相似文献   

14.
脉冲激光焊接H62黄铜   总被引:2,自引:1,他引:1       下载免费PDF全文
为了能用波长为1.06μm的Nd:YAG激光器对高反射率的H62黄铜进行激光焊接,通过理论分析和试验验证,合理地设置脉冲激光的峰值功率、单脉冲能量、频率、脉宽、脉冲波形、焊接速度、离焦量等参数,成功地对H62黄铜进行了脉冲激光焊接.结果表明,在用HWLW-300A型激光焊接设备对两块厚度为x(mm)的H62黄铜进行对接焊时,选用单脉冲激光能量约为10.x(J/mm)左右,快速上升、缓慢下降的脉冲波形,在负离焦2mm的情况下,并使激光光斑直径d、脉冲激光频率f和焊接速度v之间满足f.d=(1.2~1.4).v时,能成功地进行激光焊接.  相似文献   

15.
目的 提高TA19钛合金的微切削加工性.方法 提出一种激光诱导氧化辅助微细铣削的复合加工方法.该方法使用较小功率的纳秒脉冲激光辐照钛合金表面,诱导材料在富氧氛围下产生氧化反应,生成疏松且易于铣削去除的氧化层.随后使用微铣刀快速去除氧化层,可提高加工效率和刀具寿命.通过激光诱导氧化试验和微细铣削试验,选择最优的激光参数和铣削参数.在最优参数下,加工宽度为0.5 mm、深宽比为3的微结构.为了验证复合加工方法的高效性,在相同的铣削参数下,与常规微细铣削工艺作对比研究.结果 激光平均功率与激光扫描速度均会对氧化效果有影响.激光平均功率为4 W、扫描速度为1 mm/s时,TA19钛合金的氧化效果较好,此时生成的氧化层疏松多孔,氧化层和亚表层的厚度分别为32μm和9μm.随每齿进给量的增加,铣削力逐渐增加,而背吃刀量对铣削力的影响较小,选取铣削参数n=20000 r/min、fz=1.75μm/z、ap=6μm为较优参数.与常规微细铣削工艺相比,激光诱导氧化辅助微细铣削的切削力降低了38%,且加工的高深宽比微结构的毛刺较小,表面质量较高.结论 激光诱导氧化辅助微细铣削的复合加工工艺可以有效改善TA19钛合金的微切削加工性,提高刀具的使用寿命.  相似文献   

16.
使用Nd:YAG纳秒激光器分别在试样表面温度为20、100、200、300以及400℃下对TC4钛合金狗骨状拉伸试样进行激光喷丸表面强化,然后使用疲劳试验机在高周疲劳条件下对试样进行残余应力释放测试与疲劳寿命测试,并使用热场发射扫描电镜研究激光温喷丸后试样的断口特点。结果表明,经过10 000次循环载荷后,试样表面温度为20、100、200、300及400℃时激光喷丸TC4钛合金试样的残余压应力幅值分别下降至–100、–75、–132、–196与–146 MPa;由于较高的残余压应力幅值及较低的残余应力释放速度,300℃时激光温喷丸试样的疲劳条带间距约为0.42μm,比20℃激光喷丸降低了约64%;300℃时激光温喷丸试样的疲劳寿命高达147 846次,约为20℃激光喷丸试样的1.7倍。  相似文献   

17.
针对单晶高温合金激光外延修复层中常常出现"杂晶"的问题,提出能量约束的单晶高温合金激光外延修复工艺,并研究了激光功率和单晶母材宽度对修复层形貌与组织结构的影响。结果表明,能量约束的单晶高温合金激光外延修复层内几乎保持完全的定向外延生长枝晶,"杂晶"出现的概率大大降低。在优化参数下,修复层内获得连续的定向外延枝晶,单层厚度达到1220μm。随着激光功率升高,修复层厚度有所增加;在光斑直径和激光功率相同的条件下,随着单晶母材宽度的增加,修复层厚度先增加后减小,并呈现"扁平化"特征。当母材宽度为3mm时,修复层内呈现明显的流线特征,结合高速摄像照片,观察发现激光熔覆时熔池内金属从中心底部向表面流动,随后向四周扩散,最终沿着熔池底部回流至中心底部,如此反复。  相似文献   

18.
针对铝箔集流体表面改性的要求,基于激光毛化技术轧制13μm厚的1070铝箔,研究表面毛化参数对铝箔的力学性能和作为锂离子电池正极集流体的加工性能的影响。表面毛化铝箔的表面粗糙度Ra达到0.7~1.0μm,为常规铝箔的7.4~9.7倍,表面毛化坑诱导的应力集中效应使铝箔的屈服强度和拉伸强度降低4%~10%,而表面毛化坑造成的铝箔局部减薄和板型变化对伸长率的影响更加显著。采用相互分离的低密度毛化坑(分布参数140μm×140μm)时,表面毛化铝箔的伸长率仅降低约10%。而采用相切的高密度毛化坑(分布参数70μm×70μm)时,表面毛化铝箔的伸长率降低约50%。两种表面毛化铝箔制成的正极极片的LiCoO_2涂层剥离强度均达到常规铝箔极片的1.6倍,分散性仅为常规铝箔极片的16%~32%。毛化铝箔的表面粗糙度Ra值在0.7μm附近存在临界点,继续增大不能有效地提高涂层对铝箔集流体的剥离强度,反而损失其力学性能。模拟锂离子电池正极极片的辊压和烘干工艺后,表面毛化铝箔(分布参数140μm×140μm)的力学性能与常规铝箔的相当,但铝箔表面毛化坑诱导的应力集中现象能够促进铝箔均匀变形,抵抗局部损伤能力强,提高电池卷芯对整形压力的宽容度,有助于避免最内层极片的局部断裂现象。  相似文献   

19.
研究了温度为150℃,电流密度为5.0×103A/cm2的条件下电迁移对Ni/Sn/Ni-P(Au)线性接头中界面反应的影响.结果表明电流方向对Ni-P层的消耗起着决定作用.当Ni-P层为阴极时,电迁移加速了Ni-P层的消耗,即随着电迁移时间的延长,Ni-P层的消耗显著增加;电迁移100 h后Ni-P层消耗了5.88 μm,电迁移200 h后Ni-P层消耗了13.46μm.在Sn/Ni-P的界面上形成了一层Ni2SnP化合物而没有观察到Ni3Sn4化合物的存在,多孔状的Ni3P层位于Ni2SnP化合物与Ni-P层之间.当Ni-P层为阳极时,在电迁移过程中并没有发现Ni-P层的明显消耗,在Sn/Ni-P的界面处生成层状的Ni3Sn4化合物,其厚度随着电迁移时间的延长而缓慢增加,电迁移200 h后Ni3Sn4层的厚度达到1.81 μm.  相似文献   

20.
针对金属陶瓷Mo-ZrO2抗液态铁腐蚀问题,采用CO2激光器对金属陶瓷Mo-ZrO2进行表面重熔。采用X射线衍射仪和扫描电子显微镜分析重熔后金属陶瓷表面的相组成和形貌,用光学显微镜和SEM分析测试了重熔层厚度和孔隙率。结果表明:在激光快速加热和冷却作用下,Mo-ZrO2表面大部分金属钼以MoO3的形式挥发,氧化锆经熔化、凝固,在表面形成以柱状晶为主的氧化锆重熔层;重熔层的厚度随着激光能量密度增大而增大,最大可达430.2μm;随着激光能量密度增加,重熔层孔隙率出现先增加后降低的变化,最低达到4.29%;重熔层与基体的结合强度,随着激光能量密度的增加而递减;当激光能量密度为4J/mm2,最大结合强度为17.33 MPa。在1 650℃高温条件下,进行6h熔融金属腐蚀试验,激光重熔使金属陶瓷降低了Mo和Zr元素向熔池扩散速率,显著提高金属陶瓷Mo-ZrO2抗液态铁腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号