首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a brief review of the available latent heat storage systems for solar energy utilization. A new concept of latent heat storage of solar energy via the refrigerant-absorbent mass storage in absorption cycle heat pump systems used for solar space heating/cooling has been proposed and assessed thermodynamically. A computer modelling and numerical simulation study shows that the concept of refrigerant storage is fundamentally sound, technically feasible and yields the following advantages over other storage methods: (i) the storage capacity per unit volume is high as the latent heat of vaporization of the refrigerant is high; (ii) the heat loss from the storage to the surroundings is minimum as the storage temperature is near the ambient; (iii) prolonged energy storage is possible with no degradation in system performance and hence suitable for combined solar heating and airconditioning. The effects of operating parameters on the energy storage concentration and storage efficiency have been studied in detail.  相似文献   

2.
This paper presents an investigation of an ammonia-water absorption cycle for solar refrigeration, airconditioning and heat pump operations at higher heat supply temperatures. The system consists of a solar driven generator, rectifier, condenser, evaporator, absorber and heat exchangers for preheating and subcooling within the system. A steady state thermodynamic cycle analysis based on mass and heat balances along with the state equations for the thermodynamic properties of the ammonia-water mixture has been carried out. A numerical computer simulation of the system with input component temperatures, refrigerant concentration/mass flow rate and effectiveness of the heat exchangers has been made to evaluate the relative heat transfer rates (i.e. coefficients of performance) and the mass flow rates for the cooling/heating modes. It is found that unlike the low generator temperature behaviour the coefficients of performance for both cooling and heating modes are reduced at higher generator temperatures. However, an increase of condenser temperature for each mode of operation improves the performance of the systems at higher generator temperatures. A choice for keeping the absorber temperature equal to/lower than that of the condenser is also predicted at lower/higher generator temperatures, respectively. In general the results are more pronounced for the refrigeration mode than for the heat pump mode and are least effective for the airconditioning mode.  相似文献   

3.
This paper presents an investigation on using an ammonia refrigerant with liquid/solid absorbents in an absorber heat recovery cycle where heat released during the absorption process is used to heat up the strong solution coming out of the absorber, thereby reducing the generator heat input and hence improving the coefficient of performance. A comparative thermodynamic study is made with NH3-H2O and NH3-LiNO3 pairs as working fluids for both conventional absorption and absorber heat recovery systems. It is found that an improvement of about 10 per cent in COP for the absorber heat recovery cycle is achieved over the conventional absorption cycle and the NH3-LiNO3 system yields a higher COP than for NH3-H2O over a wide range of generator temperatures and condenser/absorber temperatures. A detailed parametric study is also presented in this paper.  相似文献   

4.
The problems in matching a heat driven absorption heat pump to a distillation process in heat pump assisted distillation are discussed. The performance of an absorption system is a function of the temperatures in the evaporator, the condenser, the absorber and the generator and the ratio of the mass flow rate in the secondary circuit to the mass flow rate in the primary circuit. In absorption systems design choices are limited by the Gibbs phase rule. Plots are given of the coefficient of performance against the temperatures of the top and bottom products and also against the energy saved.  相似文献   

5.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Richard B. Peterson 《Energy》2011,36(10):6098-6109
A concept is introduced here for storing utility-scale electrical energy in the form of latent heat. The storage process utilizes a boiling refrigerant at sub-ambient temperatures to freeze a latent heat storage material using electrically driven compressors. Recovery of the latent heat for electrical generation then uses vapor expansion and condensation which essentially reverses the storage process. Sensible heat storage is incorporated into the cycle to efficiently implement the concept. Both energy storage and generation are carried out under steady flow closed-loop conditions where the T-s diagram is similar to a Rankine cycle. From a thermodynamic perspective, work is supplied to the system while heat is transferred to the surroundings from the latent heat store. The reverse process generates work while using heat supplied by the surroundings. An analysis with expander/compressor isentropic efficiencies and small temperature differentials for the heat transfer processes can give projected round trip efficiencies in the 50–60% range using a common refrigerant. One of the attractive features of this approach is the ability to use different ambient temperatures for storage and generation. Exploiting diurnal temperature differences or sources of low grade heat (50–90 °C) significantly increases the apparent round trip storage efficiency.  相似文献   

7.
A triple-effect cycle absorption heat pump was investigated in this study using OSU-ABSIM, a modular steady state simulation program. Ammonia-water solution was used as the working fluid for the upper, high pressure cycle, while ammonia-water and ammonia-sodium thiocyanate solutions were investigated for the lower pressure cycle. The overall system is so configured that the absorber, condenser, and rectifier heat duty from the high pressure cycle is rejected to the generator of the low pressure cycle. The complete absorption system was analyzed, including air-to-hydronic heat exchangers and the natural gas-fired generator. Cycle performance was modeled over a wide range of cooling and heating mode ambients to determine the overall benefits of using this cycle. The effect of high ambient temperatures on the rise in the highest cycle pressures and temperatures (to maintain coupling between the two cycles) was investigated over the range of expected ambients. Parametric studies were conducted on several significant variables that affect cycle performance, such as heat exchanger sizes and different control schemes. The results of this study can be used to determine the merits of this cycle versus other absorption heat pump alternatives, specifically in terms of potential COP benefits for additional system complexity.  相似文献   

8.
In this work, the emphasis is laid on the study of energy storage and the estimate of the energy density stored for use in the absorption machine in its simplest configuration. As a matter of fact, a simulation program is used to calculate the solution densities and the dynamic system storage in an absorption cycle phase. In times of discharge, the evaporator and the absorber are the only devices in the cycle to operate either in energy or in the upgrading refrigeration. Such a study allows us to select the cooling phase with three storage tanks. At the entrance of the evaporator and the absorber, both reservoirs contain the pure refrigerant and the weak solution already stored in the generation phase during an operating day (charging phase). At the output of the third absorber, the tank is empty. An amount of the refrigerant evaporated at low temperature in the evaporator, receiving an amount of heat QE, and is absorbed by the weak solution with the release of an amount of heat QA at an intermediate temperature. The rich solution is, then, stored in the third tank. At the end of cooling, when both tanks are empty, the third will be full in order to be used in the generating phase.  相似文献   

9.
提出一种包含吸收溶液冷却结晶过程的新型第二类吸收式热泵循环,并对其工作过程及性能特性进行理论分析与实验研究。结果表明,该循环可在吸收器吸收溶液质量分数显著高于发生器吸收溶液质量分数的条件下工作,其热泵温升能力明显优于现有AHT循环。当冷却结晶终温和冷凝器温度为35℃、发生器温度和蒸发器温度为92℃时,其热泵温升理论上可达97℃。  相似文献   

10.
随着热泵空调的普及,热泵空调的能耗占比不断增大,其节能问题成为了关注焦点。换热器对系统性能有着重要的影响,如何通过改进换热器来提升系统性能则成为了研究的热点。其中分液冷凝器作为一种新型的换热设备,能对系统制冷性能产生积极影响。但热泵空调系统在制热工况下,分液冷凝器变成气液分离式蒸发器,其系统制热性能尚未可知。通过实验研究,调整毛细管长度和制冷剂充注量,发现在国家标准工况下分液热泵空调系统的最大制热量比原系统高4.50%,C OP比原系统高7.93%,所对应的毛细管长度为700 mm,制冷剂充注量为700 g。且制冷剂过充注的情况下,分液热泵空调系统的制热性能比较稳定。  相似文献   

11.
A thermodynamic analysis of the vapour absorption heat pump (VAHP) cycle is made to study the performance of four fluorocarbon based working fluid pairs namely, R21-DMETEG, R21-DMF, R22-DMETEG and R22-DMF. The performance characteristics compared are total heat output per unit solution flow rate; heating coefficient of performance; second law efficiency and circulation ratio. Among the four combinations, R21-DMETEG stands out as the most suitable solution for low temperature VAHP applications. Correlations are given for quick estimation of COP and limiting generator temperature. The effects of mass transfer effectiveness at generator and absorber on the performance are also investigated.  相似文献   

12.
A theoretical study on the employment of a lithium bromide absorption heat pump in Spain, used as machine type I and aimed to produce heat at 120°C via waste heat sources at 60°C, is given in the paper. Real performance conditions are stated for each component of the machine, namely the absorber, the heat recoverer, the generator, the condenser, the solution pump, the expansion valve and the evaporator. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Qe, and the heat delivered to the absorber Qa and to the condenser Qc, as well as the heat supplied to the generator Qg. In addition, the heat delivered by the hot solution to the cold solution in the heat recovered Qr, and the work Wp done by the solution pump are calculated. The probable COP is calculated, and values are obtained close to 1.4. The working temperature in the generator is determined; it ranges from 178 to 200°C. The heat produced by the lithium bromide absorption heat pump is 22% cheaper than the heat obtained from a cogeneration system comprising natural gas internal combustion engine and a high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined, and, from these results, an exergetic efficiency of 75% is obtained, which provides the quality index of absorption cycle.  相似文献   

13.
针对由天气变化导致太阳能利用不稳定和寒冷地区热泵性能低的问题,文章介绍了一种基于相变储能的太阳能空气源热泵系统,该系统能够根据气象情况灵活切换4种供暖模式,大大减少了系统耗电量。文章通过独特设计的储能冷凝器,不仅可以调节太阳能空气源热泵系统能量分配,改善太阳能空气源热泵系统制热量和建筑热负荷之间不平衡的供需关系、提高太阳能利用率,还可以提高空气源热泵低温性能,快速恢复供暖,从而实现提高太阳能空气源热泵系统整体性能的目的。文章以石家庄农村某户为研究对象进行研究,研究结果表明,太阳能空气源热泵系统供暖效果较好,太阳能空气源热泵系统COP最大值为5.19,节能环保效益十分明显。  相似文献   

14.
Optimum performance of an endoreversible heat engine‐driven heat pump cycle, based on a combination of an absorption cycle with a vapour and ejector compression cycles is investigated. This combination increases the performance of the conventional ejector and absorption cycles and provides high performance for heating. The analysis show that the combined heat pump cycle has a significant increase in system performance over the heat engine‐driven vapour compression or absorption heat pump cycle and heat engine‐driven combined vapour compression and absorption heat pump cycle. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
The reversed rectification heat pump (RRHP) is a novel type of absorption heat pump developed at Laboratoire des sciences du génie chimique (LSGC) in the research group of Professor Le Goff. The distinctive characteristic of the RRHP is that both the separator and the absorber are multi-stage gas contacting units of a type commonly used in the process industry and each composed of the multi-stage contactor, an evaporator and a condenser. The separator is a conventional rectification unit in which the working fluid is separated into a rich and a lean phase which are recombined in the absorber. The absorption is an exact reversal of the rectification, both units having inverted flow diagrams; for this reason the absorption is refered to as reversed rectification. This heat pump can produce simultanious heat and cold and provides significant primary energy savings and reduction of harmful environmental effects.  相似文献   

16.
An analytical and computational model for a solar assisted heat pump heating system with an underground seasonal cylindrical storage tank is developed. The heating system consists of flat plate solar collectors, an underground cylindrical storage tank, a heat pump and a house to be heated during winter season. Analytical solution of transient field problem outside the storage tank is obtained by the application of complex finite Fourier transform and finite integral transform techniques. Three expressions for the heat pump, space heat requirement during the winter season and available solar energy are coupled with the solution of the transient temperature field problem. The analytical solution presented can be utilized to determine the annual variation of water temperature in the cylindrical store, transient earth temperature field surrounding the store and annual periodic performance of the heating system. A computer simulation program is developed to evaluate the annual periodic water and earth temperatures and system performance parameters based on the analytical solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
This paper has proposed an improved liquefied natural gas (LNG) fuelled combined cycle power plant with a waste heat recovery and utilization system. The proposed combined cycle, which provides power outputs and thermal energy, consists of the gas/steam combined cycle, the subsystem utilizing the latent heat of spent steam from the steam turbine to vaporize LNG, the subsystem that recovers both the sensible heat and the latent heat of water vapour in the exhaust gas from the heat recovery steam generator (HRSG) by installing a condensing heat exchanger, and the HRSG waste heat utilization subsystem. The conventional combined cycle and the proposed combined cycle are modelled, considering mass, energy and exergy balances for every component and both energy and exergy analyses are conducted. Parametric analyses are performed for the proposed combined cycle to evaluate the effects of several factors, such as the gas turbine inlet temperature (TIT), the condenser pressure, the pinch point temperature difference of the condensing heat exchanger and the fuel gas heating temperature on the performance of the proposed combined cycle through simulation calculations. The results show that the net electrical efficiency and the exergy efficiency of the proposed combined cycle can be increased by 1.6 and 2.84% than those of the conventional combined cycle, respectively. The heat recovery per kg of flue gas is equal to 86.27 kJ s?1. One MW of electric power for operating sea water pumps can be saved. The net electrical efficiency and the heat recovery ratio increase as the condenser pressure decreases. The higher heat recovery from the HRSG exit flue gas is achieved at higher gas TIT and at lower pinch point temperature of the condensing heat exchanger. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
从热工学角度探讨国产吸收式制冷机的发展方向   总被引:1,自引:0,他引:1  
该文从热工学角度探讨了目前我国溴化锂吸收式制冷机整机热力循环及各热质交换设备性能、结构等方面存在的问题;在整机循环方面,指出实现各设备的合匹配、发展新的结构流程及增加新品种、新规格的机组为进一步的发展方向;在各设备性能、结构方面提出应加强吸收机理研究以及表面活化剂、高效强化管的应用研究。  相似文献   

19.
《Applied Thermal Engineering》2007,27(5-6):1029-1035
This paper deals with the system optimization of air source heat pump water heater (ASHPWH), including calculating and testing. The ASHPWH system consists of a heat pump, a water tank and connecting pipes. Air energy is absorbed at the evaporator and pumped to storage tank via a Rankine cycle. The coil pipe/condenser releases condensing heat of the refrigerant to the water side. An ASHPWH using a rotary compressor heated the water from initial temperature to the set temperature (55 °C). The capillary tube length, the filling quantity of refrigerant, the condenser coil tube length and system matching are discussed accordingly. From the testing results, it could be seen that the system performance COP could be improved obviously.  相似文献   

20.
用有限时间热力学理论研究恒温热源条件下由一个内可逆闭式布雷顿热机循环和一个内可逆四热源吸收式制冷循环组成的高炉余能余热驱动的热电冷联产装置的火用经济性能,导出热电冷联产装置的利润率和火用效率与压气机压比的关系。利用数值计算,分析热电比和吸收式制冷循环总放热量在吸收器和冷凝器之间的分配率对利润率与火用效率关系的影响,并研究联产装置各种参数对最大利润率及相应火用效率特性的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号