首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
通过凝结时间、早期抗压强度、水化热、水化产物形貌等研究了液体速凝剂对水泥早期水化反应历程的影响.结果表明,使用液体速凝剂的水泥浆体在水化的初始阶段形成了大量的水化铝酸钙晶体及针棒状的钙矾石,从而促进了水泥浆体的凝结.液体速凝剂增加了水泥早期产物中铝酸盐与硫酸盐的比例,加快了钙矾石(AFt)转化为单硫型硫铝酸钙(AFm)...  相似文献   

2.
研究了20℃、35℃、50℃养护条件下硅灰和矿粉对硫铝酸盐水泥水化的影响,分析了抗压强度、孔溶液p H值和水化产物的变化规律。结果表明:随着养护温度的升高,掺矿粉和硅灰的硫铝酸盐水泥抗压强度提高,但50℃养护条件下纯硫铝酸盐水泥浆体在28 d的抗压强度有明显倒缩现象,是由于高温下水化产物分解所致;掺入硅灰可以有效改善硫铝酸盐水泥后期抗压强度倒缩问题,掺入矿粉由于其细度和活性的限制改善能力有限。  相似文献   

3.
在硫铝酸盐水泥硬化体中,钙矾石主要以柱状、棒状而存在,这对水泥的性能产生了不利影响。探讨了超细CaCO3对硫铝酸盐水泥进行改性的研究。试验结果表明,超细CaCO3掺量为3%时,明显改善了硫铝酸盐水泥的强度,其28 d净浆与砂浆抗压强度分别达到100.6 MPa和94.1 MPa,且水泥的28 d砂浆抗折强度高达12.5 MPa。SEM显示掺超细CaCO3硫铝酸盐水泥硬化体中难以发现大颗粒状的水化硫铝酸钙晶体,结构较致密、均匀。  相似文献   

4.
通过制配水泥胶砂试件进行硫酸盐侵蚀试验,研究了水灰比、养护龄期、侵蚀溶液浓度、侵蚀龄期等对硫铝酸盐水泥混凝土抗硫酸盐侵蚀能力的影响;并采用宏观观测和扫描电镜(SEM)、能谱(EDS)微观观测方法,分析和揭示其抗硫酸盐侵蚀机理,并与高抗硫硅酸盐水泥和普通硅酸盐水泥的抗硫酸盐侵蚀性能进行了对比。结果表明,硫铝酸盐水泥胶砂试件可以抵抗高浓度硫酸盐的侵蚀,且随着水灰比的降低、养护龄期的延长,其抗硫酸盐侵蚀能力会进一步得到提高;硫铝酸盐水泥混凝土较高的抗硫酸盐侵蚀能力,主要取决于混凝土的高密实度和化学侵蚀内因的减少。侵蚀发生在开口孔隙内,侵蚀产物是团簇状钙矾石(AFt),硫铝酸盐水泥具有显著高于高抗硫水泥抗硫酸盐侵蚀的能力。  相似文献   

5.
以铝酸盐水泥为主要胶凝材料,复掺二水石膏(11%、13%、15%、17%)和普通水泥(2%、4%、6%、8%),制备出铝酸盐水泥基砂浆。通过测试宏观抗压强度,同时采用物相分析(XRD)和微观结构(SEM)两种表征手段,探究了二水石膏和普通水泥复掺对铝酸盐水泥基砂浆性能的影响。研究结果表明:改性铝酸盐水泥基砂浆试件抗压强度随着养护龄期的增长而逐渐增加,且二水石膏掺量在11%~13%,普通水泥掺量在2%~4%时,铝酸盐水泥基砂浆力学性能较好;各铝酸盐水泥基砂浆28d龄期试件内部主要含有AFt和铝胶,AFt、CAH_(10)及C_3AH_6等水化产物相互交叉、搭接,铝胶和C-S-H凝胶将各水化产物胶结在一起,且各水化产物数量的分布差异,造成其力学性能差异。  相似文献   

6.
研究了纳米C—S—H/PCE对硅酸盐-硫铝酸盐复合水泥凝结时间、早期水化历程及抗压强度的影响,采用XRD、TG、pH计和SEM等分析测试手段对早龄期水化产物和液相碱度等进行表征,探讨了纳米C—S—H/PCE对硅酸盐-硫铝酸盐复合水泥的增强机理。结果表明:掺加纳米C—S—H/PCE能有效缩短硅酸盐-硫铝酸盐复合水泥浆体初凝及终凝时间,当C—S—H掺量≥1.0%时,硅酸盐-硫铝酸盐复合水泥的初、终凝时间差明显缩短。纳米C—S—H/PCE加快了硅酸盐-硫铝酸盐复合水泥水化放热速率,提高了总的水化放热量,早期水化产物生成数量多,但对水泥水化产物类型没有影响,硅酸盐-硫铝酸盐复合水泥体系8、12、16h的抗压强度显著提高。  相似文献   

7.
本文通过水泥净浆、砂浆试验,研究了柠檬酸钠对普通硅酸盐水泥与硫铝酸盐水泥复配体系净浆的凝结时间、砂浆流动度和拉伸粘结强度、水泥水化产物的影响。研究表明,柠檬酸钠通过抑制铝酸钙、硫铝酸钙的早期水化,延缓复配体系的凝结时间、改善砂浆流动性,柠檬酸钠掺量为1.2%时,初凝时间与终凝时间分别为106 min、118 min,砂浆的流动度达到最大值为157 mm;柠檬酸钠使水泥后期水化更充分,增加钙矾石的生成量,提高砂浆拉伸粘结强度,柠檬酸钠掺入量为1.0%时,砂浆拉伸粘结强度为0.54 MPa。  相似文献   

8.
制备并表征了水化硫铝酸盐水泥粉体材料(HCSAP),并结合水化热、化学收缩、XRD、TG、SEM等测试研究了HCSAP对硫铝酸盐水泥自身水化进程的影响.结果表明:在大水灰比条件下,硫铝酸盐水泥完全水化后主要生成钙矾石、水铝黄长石、单硫型水化硫铝酸钙及少量氢氧化铝.在硫铝酸盐水泥中混掺10%HCSAP,该改性浆体后期水化...  相似文献   

9.
采用X射线衍射(XRD)、扫描电镜(SEM)、压汞仪(MIP)分析了养护温度对硫铝酸盐水泥-硅酸盐水泥-无水石膏三元体系水化早期浆体物相组成、抛光断面结构、孔结构等微结构演变的影响.结果表明:无论在10,20℃还是在40℃下养护,三元体系的主要水化产物始终为水化硫铝酸钙类物相.养护温度越高,相同龄期时无水硫铝酸钙熟料的剩余量越低,而相应水化产物钙矾石的生成量越高,片状单硫型水化硫铝酸钙的生成时间越早、生成量越高;且所得硬化浆体的最可几孔径越大.  相似文献   

10.
研究了碳酸锂(Li2CO3)对硫铝酸盐水泥凝结时间、水化历程和强度发展的影响.结果表明,Li2CO3可大幅度加速硫铝酸盐水泥的凝结,显著缩短硫铝酸盐水泥的水化诱导期,提高硫铝酸盐水泥早期水化放热速率和水化放热量,但降低后期的水化放热量:Li2CO3降低硫铝酸盐水泥后期强度,这是由于掺入Li2CO3后,水泥水化早期生成的致密水化产物层包裹了水化矿物,从而使得后期水化进程被延缓所致.  相似文献   

11.
研究了丁苯(SBR)乳液掺量对硫铝酸盐水泥流变性能、水化放热及水化产物的影响.结果表明,当SBR乳液掺量超过20%时,硫铝酸盐水泥净浆的固含量增大,聚合物加速聚集黏附,增加了净浆的屈服应力和塑性黏度,缩短了净浆的凝结时间并增大了浆体的水化放热,钙矾石随着SBR乳液掺量的增大逐渐增多,促进了硫铝酸盐水泥的早期水化进程.  相似文献   

12.
采用不同的水泥拌制砂浆,并分别掺入不同集料,综合研究每种水泥砂浆的力学性能和体积稳定性能,结果表明海砂浆的力学强度要弱于标准砂浆,但体积稳定性要强于标准砂浆。通过扫描电子显微镜(SEM)、傅里叶红外变换光谱(FTIR)和交流阻抗谱揭示了砂浆力学性能、体积稳定性的产生机理,即海砂的拌入对硫铝酸盐水泥的水化程度以及其水化产物钙矾石的团聚程度具有抑制作用,海砂引入的无机盐离子可促进硅酸盐水泥的水化反应,并且由于海砂啮齿结构,能与水泥基体紧密结合,使得海砂浆的体积稳定性优于标准砂浆。  相似文献   

13.
早期养护条件对水泥石碳硫硅钙石型硫酸盐腐蚀的影响   总被引:1,自引:0,他引:1  
研究了早期高湿度空气养护、水中标准养护及密封养护对水泥石碳硫硅钙石型硫酸盐腐蚀的影响。采用X射线衍射(XRD)、傅立叶转换红外光谱(FTIR)和扫描电子显微镜(SEM)等方法分析了水泥石经180 d硫酸盐侵蚀后的腐蚀产物。结果表明,早期高湿度空气养护,水泥石碳化生成的CaCO3填充于孔隙中,使表层结构更加致密,阻碍了SO42-等有害离子侵入,延缓了水泥石碳硫硅钙石型硫酸盐腐蚀过程。比较而言,早期密封养护,水泥水化不充分,水泥石内部缺陷相对较多,SO42-等有害离子容易侵入,水泥石碳硫硅钙石型硫酸盐腐蚀最为严重。  相似文献   

14.
研究碳酸锂对硫铝酸盐水泥凝结时间、抗压强度、抗折强度、水化产物种类及形貌的影响。研究结果表明,碳酸锂可明显加快硫铝酸盐水泥水化速率和水化历程,缩短硫铝酸盐水泥凝结时间,改善硫铝酸盐水泥早期抗压强度和抗折强度,并且没有改变硫铝酸盐水泥水化产物种类,但掺入碳酸锂会降低硫铝酸盐水泥后期抗压强度和抗折强度。  相似文献   

15.
主要研究了在0、4、8、12℃养护温度下碳酸锂对硫铝酸盐水泥水化和性能的影响。结果表明,低温养护环境下,掺入少量的碳酸锂可以明显缩短硫铝酸盐水泥的凝结时间,当碳酸锂掺量大于0.10%时,硫铝酸盐水泥凝结时间基本上不再变化,0、4、8、12℃养护环境下,掺0.10%碳酸锂的硫铝酸盐水泥初、终凝时间分别为90、150 min,57、74 min,43、57 min,23、38 min。碳酸锂可以促进硫铝酸盐水泥中硫铝酸钙矿物在低温下的早期水化,从而提高低温养护下硫铝酸盐水泥净浆的12 h、1 d和3 d抗压强度,但对硫铝酸钙28 d的水化程度无影响,而且当碳酸锂掺量较高时,低温下养护的硫铝酸盐水泥净浆7 d和28 d抗压强度会降低。  相似文献   

16.
采用缓凝组分硼砂对低碱硫铝酸盐水泥颗粒实施有效包裹,解决了水化凝结速度过快的难题,引入水分子和较小的离子缓慢渗透通过硼酸钙包裹层模型,并结合降低硼酸钙包裹层外液相浓度机制,建立了先缓凝后早强模型。研究了硼砂、锂化合物对低碱硫铝酸盐水泥凝结时间、水化历程、力学性能及微观结构的影响。试验结果表明,可通过控制硼砂和锂化合物的掺量实现低碱硫铝酸盐水泥水化硬化历程的调控;硼砂仅降低了水化产物的生成速率,锂化合物仅提高了水化产物的生成速率,两者对水化产物种类无影响;硼砂和锂化合物的复合使用能降低总孔隙率和平均孔径,能明显优化硬化浆体微结构。  相似文献   

17.
研究了硫酸铝对硫铝酸盐水泥基防渗堵漏材料凝结时间的影响,在硫铝酸盐熟料中加入适量的硫酸铝能改变硫铝酸盐水泥熟料的早期水化进程,从而缩短水泥浆体的凝结时间。运用双电层理论、水化络合理论等分析了凝结时间变化的原因,得出了通过改变熟料颗粒的双电层结构和设置改变液相浓度的结晶结构可以调控硫铝酸盐水泥基防渗堵漏材料凝结时间的结论。  相似文献   

18.
水灰比和碳酸锂对硫铝酸盐水泥水化历程的影响   总被引:2,自引:0,他引:2  
研究了水灰比和碳酸锂对硫铝酸盐水泥水化历程的影响。水化放热历程测试结果表明:随着水灰比的增大,硫铝酸盐水泥的水化放热速率增大,水化放热量提高;碳酸锂的掺入使得水化诱导期消失,水泥在加入水后直接进入水化加速期,与水灰比的影响相比,碳酸锂的掺入对水化加速期放热速率的影响更为显著;同时,碳酸锂的掺入使得硫铝酸盐水泥的早期水化速率和水化放热量增加,后期水化放热量减小。X射线衍射测试结果表明:碳酸锂的作用仅是提高了硫铝酸盐水泥的水化进程和水化速率,对生成水化产物的种类无影响。  相似文献   

19.
研究了矿粉、硅灰和粉煤灰3种矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系的标准稠度用水量、凝结时间、水化放热、胶砂抗折及抗压强度、砂浆干缩率、抗硫酸盐侵蚀性能和水化产物的影响。结果表明:随矿物掺合料掺量的增加,复合体系的标准稠度用水量增大,凝结时间延长;掺加矿物掺合料后水化放热峰出现时间延后,总水化放热量减少,其中掺加矿粉和硅灰的试件初期水化速率减慢程度较掺加粉煤灰试件更明显;3种矿物掺合料对复合体系强度的影响差别较大,掺加3%硅灰的试件3 d抗压强度增长较快;硅灰的掺加会使砂浆干缩率增大,矿粉、粉煤灰的掺加可以减小砂浆试件的干缩;矿物掺合料的掺加会提高胶砂试件抗硫酸盐侵蚀性能,掺粉煤灰的试件抗硫酸盐侵蚀性能最好。  相似文献   

20.
范昭昂  李秋义  郭远新  岳公冰 《混凝土》2023,(2):105-108+113
掺加矿物掺合料是降低高贝利特硫铝酸盐水泥(HB-SAC)混凝土的生产成本并改善其凝结硬化性能的有效措施。研究了水灰比为0.5时,矿粉(MP)、粉煤灰(FA)对高贝利特硫铝酸盐水泥抗压强度、砂浆流动度、标准稠度用水量、凝结时间的影响;并通过XRD、SEM对掺加不同矿物掺合料的高贝利特硫铝酸盐水泥净浆进行分析。结果表明:掺加矿物掺合料延长了高贝利特硫铝酸盐水泥的凝结时间;水泥浆体标准稠度用水量随矿物掺合料掺量的增加呈先减小后增大趋势,掺量为10%时达到最小值;掺加矿物掺合料后水泥砂浆流动度变大,粉煤灰对砂浆流动度的影响显著;当掺量从0增加至30%时,掺加矿粉抗压强度降低15.4%,掺加粉煤灰抗压强度降低27.6%;掺矿粉、粉煤灰后,水泥浆体中C-S-H凝胶数量增加,其他水化产物无明显变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号