首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以碳粉、硅粉为原料,以聚四氟乙烯为添加剂,在氮气气氛下采用燃烧合成工艺制备出了高纯β相碳化硅微粉.扫描电镜观察粉体颗粒平均粒径约为 249nm,呈等轴球形.添加剂含量在 5% 以上时,均可以得到单相β-SiC;随着添加剂含量提高,产物中剩余碳增多,粉体颗粒有长大趋势;改变氮气压力对产物结构没有显著影响,但可以提高燃烧速率.  相似文献   

2.
硅粉在高压氮气中自蔓延燃烧合成氮化硅   总被引:16,自引:0,他引:16  
本文对硅粉在高压氮气中的自蔓延燃烧合成(SHS)氮化硅粉末的行为进行了详细研究。结果表明:(1)在遥当条件下,硅粉在SHS过程中可以完全氮化,生成氮化硅,产物含氮量高,含氧量低,但为β相;(2)在硅粉SHS反应中,必须加入适量的Si_3N_4晶种;(3)硅的SHS燃烧波传播速度随氮气压力升高、反应物填装密度减小而增大,但与反应物组成和样品直径无关;(4)燃烧波温度随氮气压力升高、样品直径增大而升高,与反应物组成和填装密度无关。此外本文对产物形貌与上述各实验因素的关系也进行了研究。  相似文献   

3.
以高纯的硅质原料和碳质原料为合成原料,采用多热源法在真空条件下合成出了β-SiC微粉.用X射线衍射(XRD)、扫描电子显微镜(SEM)、化学分析及激光粒度分析仪等分析测试手段对合成产物进行了表征.结果表明,合成产物晶相为β-SiC,纯度达99%以上,一级品中晶体颗粒多为半自形体和自形体.温度越高,合成的β-SiC微粉晶型程度越好,纯度也相应的提高.当温度超过1758℃时,合成产物由β-SiC转变为α-SiC.  相似文献   

4.
预热自蔓延合成SiC粉末机理的研究   总被引:5,自引:1,他引:4  
对预热SHS法合成SiC粉末所需的最低预热温度及产物粒度与反应物原始粒度的关系等进行了研究.发现合成的SiC粉末的粒度与Si粉粒度无关,在此基础上对SiC的形成机制进行了探讨.在通氮气情况下,预热SHS-SiC反应中有一个β-Si3N4的生成过程,但生成的β-Si3N4在反应的高温下又很快分解  相似文献   

5.
对预热SHS法合成SiC粉末所需的最低预热温度及产物粒度与反应物始粒度的关系等进行了研究。发现合成的SiC粉末的粒度与Si粉粒度无关,在此基础上对SiC的形成机制进行了探讨。在通氮气情况下,预热SHS-SiC反应中有一个β-Si3N4的生成过程,但生成的β-Si3N4在反应的高温下又很快分解。  相似文献   

6.
以硅粉和液态酚醛树脂为原料,硝酸镍为催化剂前驱体,采用催化反应的方法制备了碳化硅粉体。研究了反应温度、催化剂用量、保温时间和碳硅摩尔比等对合成碳化硅粉体的影响,采用X射线衍射、场发射扫描电子显微镜和透射电子显微镜分析了产物的物相组成和显微结构。结果表明:无催化剂时,β-SiC的合成条件为1 350℃保温3 h,所合成的β-SiC大部分为颗粒状,仅有极少量晶须生成;当添加0.50%的Ni作催化剂、n(C):n(Si)=1.2:1.0时,1 300℃保温3h即可合成纯相的β-SiC,且制备的试样中有大量β-SiC晶须生成。β-SiC晶须的生长机理主要为固-液-气-固机理。  相似文献   

7.
自蔓延高温合成制备单相氮化硅镁粉体   总被引:1,自引:0,他引:1  
通过自蔓延高温合成技术制备了以MgSiN2为主相的粉体,然后利用酸洗工艺除去杂质得到单相MgSiN2粉体.研究了原料配比、稀释剂MgSiN2的添加量和N2压力对燃烧合成产物相组成的影响,并探讨了酸洗条件对洗除MgO杂质的影响.研究结果表明,以化学计量比配制的原料,难以通过自蔓延高温合成法直接合成单相的MgSiN2粉体;...  相似文献   

8.
选用多热源法合成的β-SiC粉体为原料,采用亚临界水热法去除β-SiC粉体中的含Si杂质.通过XRD、SEM、EDS及可见分光光度计等对β-SiC粉体的物相组成、微观结构及Si杂质含量进行表征,重点研究β-SiC粉体中含Si杂质的亚临界水热去除工艺参数优化.结果表明,β-SiC粉体中的含Si杂质主要为SiO2和游离硅(...  相似文献   

9.
氮气压对自蔓延高温合成Si3N4的影响   总被引:5,自引:1,他引:4  
主要研究了氮气压力对自蔓延高温合成Si3N4的影响,并通过放气法详细地研究了β-Si3N4的生长机理,结果表明:随着氮气压的增加和燃烧温度的提高,促进了Si的蒸发,从而致使产物中Si3N4的α/β相的比例增加,通过放气法实验,观察到了棒状Si3N4以气-液-固(VLS)机制生长的中间形态,X射线能谱分析表明β-Si3N4以气-液-固(VLS)机制生长所需的液相依赖于反应物中的含氧杂质,而不是金属杂  相似文献   

10.
一种大量制备β-SiC纳米晶须的方法,属于纳米技术领域。本发明以二氧化硅粉和硅粉为主要原料,配料后,经高频感应加热发生硅热还原反应生成SiO,然后以碳纤维作为碳源,直接生成大量β-SiC纳米晶须。与现有技术相比,本发明具有方法简单,成本低廉,可以大规模制备出高质量β-SiC纳米晶须的特点。适合进行工业化生产,为国内外进一步开发利用β-SiC纳米晶须提供了一种良好的方法。  相似文献   

11.
自蔓延燃烧法合成ZnO粉体及其压敏电阻的制备   总被引:7,自引:0,他引:7  
以硝酸锌、尿素以及其它添加剂为原料,通过自蔓延燃烧法一次性合成了ZnO压敏电阻用掺杂纳米粉体.用X射线衍射、扫描电镜、比表面测试、激光粒度分析等手段对所制备粉体的性能进行了表征.研究了反应物质量比对粉体性能的影响,以及煅烧温度对ZnO压敏电阻电性能的影响,并对自蔓延燃烧合成反应进行了初步探讨.结果表明:在点火温度为600℃,尿素/金属离子盐质量比为1∶1时,所制备的掺杂纳米ZnO粉体的综合性能最好.用此粉体制备的ZnO压敏电阻的电性能最佳,电位梯度为745.27V/mm,非线性系数为56.53,漏电流为6μA.  相似文献   

12.
自蔓延高温合成细晶六硼化钙陶瓷粉末(英文)   总被引:1,自引:1,他引:0  
基于Mg–B2O3–CaO原料体系,采用自蔓延高温合成(self-propagating high-temperature synthesis,SHS)和后期酸处理工艺,制备出高纯度、均匀分布、小粒径的立方晶型细晶六硼化钙粉末。分析了Mg–B2O3–CaO自蔓延高温反应体系的燃烧产物成分及反应机理,测量了不同SHS反应物原始坯体成型压力的燃烧温度曲线,探讨了不同镁掺量和不同气氛对燃烧产物成分和形貌的影响。研究了原始坯体成型压力与最终CaB6产物粒径的关系。结果表明:采用氩气保护能抑制镁挥发;合适的原始坯体压力有利于合成分布均匀的细晶CaB6粉末。  相似文献   

13.
自蔓延高温技术制备ZrC粉体(英文)   总被引:4,自引:0,他引:4  
采用自蔓延高温合成(self-propagating high-temperature synthesis,SHS)技术,以 Zr+C 为反应体系合成了 ZrC 粉末。研究了实验参数对 SHS过程中点火电流、燃烧温度的影响。采用了 3 种碳源,研究了其对最终产物形貌及化学组成的影响。通过添加不同含量的 NaCl 作为 SHS 稀释剂,控制产物粒径及形貌。结果表明:炭黑是高温自蔓延法制备 ZrC 粉体的最佳碳源。由该体系制备的 ZrC 粉末粒径在 0.5~1 μm之间,氧含量为 0.38%。随稀释剂 NaCl 含量增加,体系燃烧温度降低,产物粒径减小。当 NaCl 含量为 30% (质量分数)时,体系燃烧温度下降至 1 810 K,产物 ZrC 粉末的粒径减小至 50 nm。  相似文献   

14.
初始硅粉粒度对自蔓延高温合成氮化硅的影响   总被引:9,自引:1,他引:8  
研究了平均粒度分别为2,7.8和15.4μm的3种初始硅粉在氮气中的燃烧氮化规律。初始硅粉粒度越细,则在氮气中的燃烧温度高越高,燃烧滤蔓延速度越快,激活能也越低;较细的硅粉表面的硅蒸发通量大,psi高,易于形成延长方向与硅粉表面垂直的针状或柱状、纤维状晶体;而较粗的硅粉则易于形成氮化硅包覆层,且可以通过“包覆爆裂”机制继续进行二次氮化。较细的硅粉在氮气中的燃烧温度曲线上只出现一次燃烧峰,而较粗的硅  相似文献   

15.
对SiO2-C-N2系统中的主要化学反应和SiC晶须在该系统中的合成条件进行了热力学分析,采用SiO2微粉为硅源、石墨、活性炭和碳黑为碳源,氧化硼为催化剂,分别在1 500℃、1 550℃和1 600℃利用碳热还原法合成碳化硅晶须,通过x射线衍射、扫描电子显微镜和电子探针分析合成晶须的特征.结果表明:在氮气气氛下利用碳热还原反应合成SiC晶须的温度在1 450℃以上,且随着温度的升高,SiC晶须的生成量增多,晶须直径变大;以炭黑和活性炭等较高活性的碳源代替石墨可以使反应速度加快,但合成的SiC晶须较粗甚至生成SiC颗粒;杂质含量较多会使得SiC晶须生成数量降低,同时晶须出现弯曲现象.  相似文献   

16.
郝斌 《硅酸盐通报》2015,34(3):864-867
以乙炔炭黑和硅粉为原料,采用微波烧结技术合成制备了粒度不同的碳化硅粉体.研究了反应温度和保温时间对碳化硅粉体产率和粒度的影响.结果表明:在900℃反应30 min,所得产物的主要物相为β-SiC和仍残余少量金属Si.随着反应温度的升高,产物中SiC的含量不断增加,残余金属Si的含量则明显下降.当反应温度升高至1100℃以上时,则得到单相的β-SiC.在1200℃下反应5min,产物中主要物相为SiC,存在着少量未反应的金属Si,当反应时间延长到15 min时,即得到单相的β-SiC.  相似文献   

17.
稀释剂含量对自蔓延高温合成Si3N4-SiC-TiN陶瓷的影响   总被引:5,自引:2,他引:3  
以TiSi2和SiC为原料,利用自蔓延高温合成(self-propagation high-temperature synthesis,SHS)方法合成直径为24mm的Si3N4-SiC-TiN陶瓷.通过理论计算和实验研究了不同孔隙率压坯中稀释剂SiC含量对反应物TiSi2转化率的影响.结果表明:SiC在一定范围内增加有利于TiSi2的氮化,且含40%(质量分数,下同)SiC和50%SiC的压坯在燃烧合成过程中发生了SiC的氮化反应.压坯孔隙率为50%(体积分数,下同)时,反应物TiSi2氮化充分,最终产物为Si3N4-SiC-TiN.孔隙率为45%,含量为30%SiC和40%SiC压坯的合成产物中残留游离Si,50%SiC压坯的合成产物中未发现游离Si.在稀释剂含量为35%SiC,氮气压力为150 MPa条件下,所得的Si3N4-SiC-TiN复相陶瓷抗弯强度达430 MPa,断裂韧性为3.6MPa·m1/2.  相似文献   

18.
采用溶胶-凝胶-碳热还原法,以正硅酸乙酯和蔗糖为原料,在0.1 MPaAr气气氛中碳熟还原合成β-SiC纳米粉体.通过x射线衍射,Raman光谱、扫描电镜和透射电镜对β-SiC纳米粉体的物相、微观结构及形貌进行了表征.结果表明:当合成温度为1 600℃时,已经开始生成β-SiC相,随着温度升高至1 700℃,完全生成了含有Csi缺陷的富碳β-Sic相.β-SiC纳米粉体表现为纳米级的团聚颗粒,平均粒径为40nm,并生成晶须.对β-SiC纳米粉体的碳热还原反应机理进行了分析,结果表明:溶胶-凝胶法明显降低了生成气态SiO控制反应的温度.  相似文献   

19.
张颖  张军战  刘民生 《硅酸盐通报》2013,32(7):1375-1378
对Si3N4-C和SiO2-C-N2系统中的主要化学反应以及SiC晶须在两种系统中合成的热力学条件进行了分析,进而采用碳黑为碳源、Si3N4与SiO2微粉为硅源、氧化硼为催化剂,分别在氩气与氮气气氛下,于1600℃合成SiC晶须.采用扫描电子显微镜,透射电子显微镜等分析手段分析了晶须的生成量和形貌结构特征.结果表明:通过SiO2-C-N2系统可以一步合成SiC晶须,其与Si3N4-C系统合成的均为β-SiC;但在晶须的生成量和质量上,Si3N4-C系统合成的SiC晶须较好.  相似文献   

20.
对在太阳能等行业生产过程中产生的硅废料进行回收或重复利用具有重要的经济价值,但目前的回收方法普遍存在成本较高等问题.本文利用商业硅粉和硅废料为原料,通过高温自蔓延合成方法合成复合Si3N4/SiC陶瓷粉体.结果显示产物的显微形貌与原料配比和氮气压力有较大关系.随着氮气压力的升高,β-Si3N4的比例增加.在较低温度的临界状态下,会形成片状Si3 N4晶体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号