首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Common principles of protein translocation across membranes   总被引:10,自引:0,他引:10  
Most major systems that transport proteins across a membrane share the following features: an amino-terminal transient signal sequence on the transported protein, a targeting system on the cis side of the membrane, a hetero-oligomeric transmembrane channel that is gated both across and within the plane of the membrane, a peripherally attached protein translocation motor that is powered by the hydrolysis of nucleoside triphosphate, and a protein folding system on the trans side of the membrane. These transport systems are divided into two families: export systems that export proteins out of the cytosol, and import systems that transport proteins into cytosol-like compartments.  相似文献   

2.
Nine low molecular weight nerve growth factor (NGF)-like peptides have been designed to mimic the putative receptor-binding epitope of NGF defined by two beta-hairpin loops. Eight different spacers were used as variable links between the beta-loop amino acid residues, which from mutagenesis experiments were found to play an important role in the biological activity of NGF. These spacers were amino acids, natural or non-natural, differing in length (5-13 A) and polarity. The peptides were synthesized via the Fmoc solid-phase peptide synthesis and purified by reversed-phase HPLC. Their primary sequences were analyzed by a combination of automated Edman degradation and mass spectrometry. The peptides were tested using two different biological assays, the fibre outgrowth from chick embryonic sympathetic ganglia and the PC12 cell differentiation assay. Weak antagonistic effects could be observed for some peptides.  相似文献   

3.
4.
5.
6.
7.
In contrast with pepsin, pepsinogen does not bind pepstatin at pH values between 5.3 and 2.5. Pepsinogen is not retarded by pepstatin immobilized on to aminohexyl-Sepharose at pH5.3 or 4.1, whereas at pH3.0 activation takes place during the chromatography, with retardation of the resultant pepsin.  相似文献   

8.
9.
10.
Short- and long-term ethanol exposures have been shown to alter cellular levels of cAMP, but little is known about the effects of ethanol on cAMP-dependent protein kinase (PKA). When cAMP levels increase, the catalytic subunit of PKA (C alpha) is released from the regulatory subunit, phosphorylates nearby proteins, and then translocates to the nucleus, where it regulates gene expression. Altered localization of C alpha would have profound effects on multiple cellular functions. Therefore, we investigated whether ethanol alters intracellular localization of C alpha. NG108-15 cells were incubated in the presence or absence of ethanol for as long as 48 h, and localization of PKA subunits was determined by immunocytochemistry. We found that ethanol exposure produced a significant translocation of C alpha from the Golgi area to the nucleus. C alpha remained in the nucleus as long as ethanol was present. There was no effect of ethanol on localization of the type I regulatory subunit of PKA. Ethanol also caused a 43% decrease in the amount of type I regulatory subunit but had no effect on the amount of C alpha as determined by Western blot. These data suggest that ethanol-induced translocation of C alpha to the nucleus may account, in part, for diverse changes in cellular function and gene expression produced by alcohol.  相似文献   

11.
The assembly of integral membrane proteins is determined by features of these proteins and the protein translocation apparatus. We used alkaline phosphatase fusions to the membrane protein MalF to investigate the role of the protein translocation machinery in the arrangement of proteins in the cytoplasmic membrane of Escherichia coli. In particular, we studied the effects of prlA mutations on membrane protein topology. These mutations lie in the secY gene, which encodes a core component of the protein translocation apparatus. We find that the topology of some of the fusion proteins is changed and, in one case, is completely inverted in prlA mutants. We discuss the mechanism of prlA-mediated export and the role of the protein translocation apparatus in contributing to membrane protein topology.  相似文献   

12.
Translation termination in vivo was studied in the yeast Saccharomyces cerevisiae using a translation-assay system. Codon changes that were made at position -2 relative to the stop codon, gave a 3.5-fold effect on termination in a release-factor-defective (sup45) mutant strain, in line with the effect observed in a wild-type strain. The influence of the -2 codon could be correlated to the charge of the corresponding amino acid residue in the nascent peptide; an acidic residue favoring efficient termination. Thus, the C-terminal end of the nascent peptide influences translation termination both in the bacterium Escherichia coli and to a lesser extent in the yeast S. cerevisiae. However, the sensitivity to the charge of the penultimate amino acid is reversed when the E. coli and S. cerevisiae are compared. Changing - 1 (P-site) codons in yeast gave a 10-fold difference in effect on the efficiency of termination. This effect could not be related to any property of the encoded last amino acid in the nascent peptide. Iso-codons read by the same tRNA (AAA/G, GAA/G) gave similar readthrough values. Codons for glutamine (CAA/G), glutamic acid (GAA/G) and isoleucine (AUA/C) that are read by different isoaccepting tRNAs are associated with an approximately twofold difference in each case in termination efficiency. This suggests that the P-site tRNA is able to influence termination at UGAC in yeast.  相似文献   

13.
Hippocampal synapses express two distinct forms of the long-term potentiation (LTP), i.e. NMDA receptor-dependent and -independent LTPs. To understand its molecular-anatomical basis, we produced affinity-purified antibodies against the GluRepsilon1 (NR2A), GluRepsilon2 (NR2B), and GluRzeta1 (NR1) subunits of the N-methyl-D-aspartate (NMDA) receptor channel, and determined their distributions in the mouse hippocampus. Using NMDA receptor subunit-deficient mice as the specificity controls, section pretreatment with proteases (pepsin and proteinase K) was found to be very effective to detect authentic NMDA receptor subunits. As the result of modified immunohistochemistry, all three subunits were detected at the highest level in the strata oriens and radiatum of the CA1 subfield, and high levels were also seen in most other neuropil layers of the CA1 and CA3 subfields and of the dentate gyrus. However, the stratum lucidum, a mossy fibre-recipient layer of the CA3 subfield, contained low levels of the GluRepsilon1 and GluRzeta1 subunits and almost excluded the GluRepsilon2 subunit. Double immunofluorescence with the AMPA receptor GluRalpha1 (GluR1 or GluR-A) subunit further demonstrated that the GluRepsilon1 subunit was colocalized in a subset, not all, of GluRalpha1-immunopositive structures in the stratum lucidum. Therefore, the selective scarcity of these NMDA receptor subunits in the stratum lucidum suggests that a different synaptic targeting mechanism exerts within a single CA3 pyramidal neurone in vivo, which would explain contrasting significance of the NMDA receptor channel in LTP induction mechanisms between the mossy fibre-CA3 synapse and other hippocampal synapses.  相似文献   

14.
The split-ubiquitin technique was used to detect transient protein interactions in living cells. Nub, the N-terminal half of ubiquitin (Ub), was fused to Sec62p, a component of the protein translocation machinery in the endoplasmic reticulum of Saccharomyces cerevisiae. Cub, the C-terminal half of Ub, was fused to the C terminus of a signal sequence. The reconstitution of a quasi-native Ub structure from the two halves of Ub, and the resulting cleavage by Ub-specific proteases at the C terminus of Cub, serve as a gauge of proximity between the two test proteins linked to Nub and Cub. Using this assay, we show that Sec62p is spatially close to the signal sequence of the prepro-alpha-factor in vivo. This proximity is confined to the nascent polypeptide chain immediately following the signal sequence. In addition, the extent of proximity depends on the nature of the signal sequence. Cub fusions that bore the signal sequence of invertase resulted in a much lower Ub reconstitution with Nub-Sec62p than otherwise identical test proteins bearing the signal sequence of prepro-alpha-factor. An inactive derivative of Sec62p failed to interact with signal sequences in this assay. These in vivo findings are consistent with Sec62p being part of a signal sequence-binding complex.  相似文献   

15.
16.
Purple membranes (PM) from Halobacterium were reconstituted with 57Fe ions and investigated by M?ssbauer spectroscopy within the temperature range from 5 to 300 K at the Fe/bacteriorhodopsin (BR) ratio 0.6-300. When the Fe/Br ratio was below 2, Fe3+ bonded to PM mostly as hydroxymonomeric particle [FeOH]2+.5H2O, the apparent charge of the iron ion being two. When the Fe/BR ratio exceeded two, the dimeric form [FeOH](2+)4.8H2O along with a cluster form dominated. The temperature dependences of the mean square displacement show that the mobility of Fe ions changes from the solid-state type to the quasi-diffusional one at temperatures approximately 200 and approximately 230 K for the dimeric or monomeric and cluster iron forms, respectively. The nature of the cation binding sites and their location on the PM surface are discussed. A possible role of the divalent cation binding to PM in the mechanism of BR proton pumping is suggested.  相似文献   

17.
18.
The translocation of soluble Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) to postsynaptic densities (PSDs) was investigated. When soluble CaM kinase II previously autophosphorylated was incubated with PSDs, the kinase was precipitated by centrifugation, indicating that the soluble kinase associated with PSDs and formed a PSD-CaM kinase II complex. Ca2+-independent activity generated by autophosphorylation of the kinase was retained in the complex. A number of PSD proteins were phosphorylated by the kinase associated with PSDs in both the absence and presence of Ca2+. When PSD-CaM kinase II complex was incubated at 30 degrees C, the enzyme was dephosphorylated and released from the complex. These results indicate that CaM kinase II reversibly translocates to PSDs in a phosphorylation-dependent manner.  相似文献   

19.
AKT1 is the human homolog of the v-akt oncogene. AKT1 has two distinct protein domains, one serine/threonine kinase domain and one pleckstrin homology (PH) domain. We studied the expression and activity of AKT1 in hematopoietic cell lines. The expression of AKT1 was constitutive in hematopoietic cells of various stages of development. In the growth factor dependent MO7e cells, serum and growth factor starvation resulted in an early 50% fall in activity which was maintained over 24 h. Treatment of cells which growth factors or agents which induce differentiation activated AKT1. The subcellular localization of AKT1 in MO7e cells was altered as it was activated. High AKT1 kinase activity was associated with membrane fractions in stimulated cells, in contrast to the much lower AKT1 activity in membranes of cells starved of serum and growth factor for 1 h. These results demonstrate AKT1 kinase activity and its regulation by extracellular signaling factors in vivo in hematopoietic cells, and suggest that the activation of AKT1 involves intracellular translocation of the kinase from cytosol to membrane.  相似文献   

20.
The role of hydration in the catalytic activity and membrane binding of rat brain protein kinase C (PKC) was investigated by modulating the activity of water with polyethylene glycols with molecular weights of 1000-20000 and dextran with a molecular weight of 20000. These polymers create an osmotic stress due to their exclusion from hydration shells and crevices on proteins, causing dehydration. Polymers larger than 1000 caused an activation of the PKC-catalyzed phosphorylation of histone, while PEG 1000 had no significant effect. The extent of activation by PEG and dextran 20000 was larger than that of PEG 6000 or 8000 when vesicles were composed of 1:1 POPS/POPC, suggesting the presence of at least two distinct regions of exclusion on PKC: one inaccessible to PEGs larger than 1000 and the other inaccessible only to PEGs of > 10000. The extent of activation was dependent on the composition of the vesicles used. If basal activity (without PEG) was low (e.g. with low PS content in membranes), then the extent of activation was similar for all polymers larger than 1000. Binding of PKC to membranes containing 50 mol % PS was unaffected by PEG 6000 but was inhibited by PEG 20000. At a low PS content of 10%, both PEG 6000 and 20000 inhibited binding. This suggests that PKC becomes hydrated upon binding to membranes. Under conditions in which all of the enzyme is membrane-bound, both Km and Vmax for the phosphorylation of histone increased linearly with osmotic stress induced by PEG 6000. Thus, PKC becomes hydrated with 2311 +/- 476 water molecules upon binding of histone and is dehydrated by 1349 +/- 882 water molecules in going to the transition state. Km and Vmax for phosphorylation of the MARCKS peptide also increase with osmotic stress induced by PEG 6000. When protamine sulfate was used as a substrate (cofactor-independent), Vmax for the reaction was unaffected, but Km decreased with osmotic pressure (with PEG 6000), suggesting that PKC becomes dehydrated upon binding protamine. Similar results were found with a peptide substrate derived from the pseudosubstrate site of PKC epsilon. Since dextran, a polymer unrelated in structure to PEG, could cause a similar activation of PKC, the effects seen are likely due to osmotic stress and not to specific binding of PEG to PKC. Also, results obtained with PE-linked PEG were opposite to those with free PEG. PE-linked PEGs of 2000 and 5000 caused an inhibition of PKC-catalyzed phosphorylation of histone when present in membranes. If a specific interaction occurred with PEG, this would be expected to occur even with PE-PEG. The effects observed with free PEG are also independent of ionic strength. Free PEG had no effect on the bilayer to hexagonal phase transition temperature of DEPE membranes, suggesting that the effects on PKC activity are not a consequence of changes in membrane properties at the osmotic pressures used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号