首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper looks at the performance of plain, longitudinally and transversely grooved journal bearings. An experimental apparatus was created to test the performance, in terms of frictional torque under static and dynamic loading, of each of the three bearing types, to try and understand whether grooving created a different film thickness. The tests were carried out for various combinations of load and speed. The results showed an agreement between theoretical and experimental values that gave some confidence in the experimental methods, and showed the frictional torques between the plain and longitudinally grooved bearings to be similar at all loads, and at lower rather than higher speeds, while those of the transversely grooved bearing differed from the others.  相似文献   

2.
Design charts are presented of a dynamically loaded thrust bearing with as annular recess. The effect of non-parallelism between the bearing and the runner surfaces is also considered, since this is a common problem in hydrostatic thrust bearings. Based on pre-assigned dynamic excitations the pressure equation is solved numerically by finite difference methods to render the bearing performance characteristics namely: load capacity; bearing stiffness; damping coefficient; and lubricant flow rate. Results concluded that the bearing performance chareacteristics are dependent on the bearing radii ratios, the squeeze number, the bearing number and the tilt parameter.  相似文献   

3.
To analyze the effects of non-Newtonian lubricants and surface roughness in journal bearing lubrication, a modified Reynolds equation is derived. In the equation, differential viscosity and the first normal stress function are defined to specify the rheological properties of non-Newtonian medium. Flow factors are used to specify the effect of surface roughness. The modified Reynolds equation is numerically calculated using super over relaxation method. Numerical results of the lubrication show that the differential viscosity is the principal non-Newtonian property affecting the lubrication, it is determined by the material parameters of the lubricant and is affected by the shearing rate. Under its effect, the load capacity of non-Newtonian lubricants is not always higher or lower than that of Newtonian lubricants’. The effect of the first normal stress difference increases under the conditions of dynamic loading. Surface roughness shows an obvious effect on load capacity when it is greater than one-tenth of the film thickness, and the surface with longitudinal pattern affects the load capacity most. However, surface roughness has less effect on lubrication results than lubricants’ non-Newtonian property. __________ Translated from Tribology, 2005, 25(6) (in Chinese)  相似文献   

4.
A journal bearing test rig was designed and constructed to test the behaviour of journals with wavy surfaces, the circumferential undulations being varied both in amplitude and in number. Results show that wavy journal surfaces may well enhance the load carrying capacity of a bearing. Moreover, surface undulations are shown to move the journal centre locus closer to the load line, ie cause a lower attitude angle. These effects are found to be more pronounced with larger wave amplitudes, and with higher numbers of waves around the journal circumference. In general, friction is found to be reduced with increase in surface wave amplitude.Good agreement is shown to exist between test results and a computer aided analysis conducted by the authors to predict wavy journals performance1. It has been established that a wavy journal surface may, under certain conditions, display higher load capacity, lower friction and permit safer running of journal than bearings with perfectly smooth surfaces.  相似文献   

5.
The effects of surface roughness on the static characteristics of finite porous journal bearings under hydrodynamic lubrication conditions are investigated in this paper. The well‐established Christensen stochastic theory of hydrodynamic lubrication of rough surfaces is used to incorporate the effects of surface roughness into the Reynolds equation. The analysis takes into account the flexibility of the porous liner by using a thin liner model. The effects of velocity slip at the surface of the porous medium are considered in the analysis by using the Beavers‐Joseph criterion. The mathematical model is then solved numerically by finite‐difference methods for mean hydrodynamic pressure, which in turn gives the hydrodynamic load. The effects of the surface roughness parameter, surface pattern, eccentricity ratio, length‐to‐diameter ratio, permeability parameter, and flexibility parameter on the hydrodynamic load‐carrying capacity, attitude angle, and friction factor are discussed.  相似文献   

6.
This paper presents an analytical study of the damping characteristics of circular discs subjected to dynamic loads. Assuming a circular hydrostatic thrust bearing describing different geometrical configurations and surface texture irregularities (on both the macro- and micro-scales) and subjected to sinusoidal harmonic excitations, an analytical formulation to identify the oil film thickness variation as a function of damping loads is proposed. The Reynolds equation in the discretized form has been solved numerically using the tdma (Thomas Algorithm). Such a direct technique has proved to be reliable in solving similar problems and minimizing computational time compared with conventional iterative procedures. Compared to the performance of a flat and smooth circular disc, results indicated that the micro- and macro-surface undulations play a major role in dictating the squeeze action damping characteristics  相似文献   

7.
This paper presents the theoretical investigations of the rheological effects of the couple stress fluids on the static and dynamic behaviour of the pure squeeze films in the porous journal bearings. The present study predicts the effects of percolation of the polar additives (microstructures) into the porous matrix on the performance of squeeze films in the porous journal bearings. The most general modified Reynolds-type equation is derived for a porous journal bearing with no journal rotation. The analysis takes into account of the tangential velocity slip at the porous interface by using the BJ-slip condition. The cases of a short porous journal bearing under a constant applied load and that under an alternating load are analyzed. As compared to the Newtonian lubricants, the lubricants which sustain the couple stresses yield an increase in the load carrying capacity. Under a cyclic load the couple stress fluids provide a reduction in the journal velocity and an increase in the minimum permissible height of squeeze films.  相似文献   

8.
The article aims to provide references for designing water-lubricated plain journal bearings. Considering the differences between the physical properties of the water and of the oil, the effects of eccentricity ratio on pressure distribution of water film are analyzed by computational fluid dynamics (CFD). Then numerical analysis of journal bearings with different dimensions is undertaken under different rotational speeds. Based on the analysis, a reference is produced for selecting the initial diameter dimension which is used to design an efficient water-lubricated plain bearing under the given load and rotational speed. At last, the reference is verified by an experimental case.  相似文献   

9.
Commercial base oil and oil fortifier added to this oil are used to investigate the frictional behavior of the engine journal bearings using the theoretical Reynolds equation and experimental test rig. In the theoretical part of the study, the Reynolds equation that states the pressure distribution and friction force with finite width was solved by using the finite difference method. In the experimental part of the study, a new design test rig was conducted to measure the friction force, the lubricant film thickness of the engine journal bearing using base oil under dynamical loaded conditions. The effect of oil fortifier was detected measuring the friction force every three minutes in each 360 crank angle during 15 minutes of experiment. As the theoretical friction results showed similar variation with the experimental measurements of engine bearings, adding oil fortifier to the base oil presented a substantial reduction of friction force during the testing period.  相似文献   

10.
The effect of journal and bearing surface roughness on the performance of a capillary compensated hole-entry hybrid journal bearing system has been theoretically studied. The analysis considers the average Reynold’s equation for the solution of lubricant flow field in the clearance space of a rough surface journal bearing system. The finite element method and Galarkin’s technique has been used to derive the system equation for the lubricant flow field. The non-dimensional parameters Λ (surface roughness parameter) and γ (surface pattern parameter) have been defined to represent the magnitude of height distribution of surface irregularities and their orientation, respectively. The influence of surface roughness on the bearing performance has been studied for the transverse, isotropic and longitudinal surface patterns. The bearing performance characteristics have been computed for both symmetric and asymmetric capillary compensated hole-entry journal bearing configurations for the various values of surface roughness parameter (Λ), surface pattern parameter (γ) and restrictor design parameter ( ). The computed results indicate that the inclusion of surface roughness effects in the analysis affects the performance of a bearing quite significantly vis-à-vis smooth surface bearing. The study indicates that for generation of accurate bearing characteristic data, the inclusion of surface roughness effects in the analysis is essential.  相似文献   

11.
The effect of flexibility of bearing liner on the static and dynamic performance characteristics of a three-lobe journal bearing was studied. The three-dimensional Navier-Stokes and the continuity equations governing the lubricant flow in the clearance space of the journal bearing, and the three-dimensional e elasticity equations governing the displacement field in the bearing liner, were solved by using the finite element method and an iteration scheme. The static and dynamic performance characteristics were calculated at various eccentricities for a wide range of values of deformation coefficients which take into account the flexibility of the bearing liner.  相似文献   

12.
This paper proposes a method to calculate the stiffness and the damping coefficients of the coupled journal and thrust bearings. Reynolds equations and their perturbation equations of journal and thrust bearings are transformed to the finite element equations by considering the continuity of pressure and flow at the interface between the journal and the thrust bearings. It also includes the Reynolds boundary condition in the numerical analysis to simulate the cavitation phenomenon. The stiffness and damping coefficients of the proposed mathematical method are compared with those of the numerical differentiation of the bearing force with respect to finite displacements and finite velocities of bearing center. It shows that the proposed method can calculate the dynamic coefficients of a coupled journal and thrust bearing more numerically stable and computationally efficient than the differentiation method. It also investigates the coupling effect of the coupled journal and thrust bearing and it shows that the proposed method makes it possible to calculate the cross-coupled dynamic coefficients in the radial–axial direction of the coupled journal and thrust bearing.  相似文献   

13.
To inspect the performance characteristics of finite journal-bearing systems, the combined effects of couple stress due to a Newtonian lubricant blended with additives and the presence of roughness on journal-bearing surfaces are studied in this article. Basing on the Stokes theory and Christensen’s stochastic model, the stochastic generalized Reynolds equation is deduced. The film pressure distribution equation is numerically solved by using the conjugate gradient method of iterations. According to the results, the couple stress effects can raise the film pressure of the lubricant fluid, improve the load-carrying capacity and reduce the friction parameter, especially at high eccentricity ratio. The surface roughness effect is dominant in long bearing approximation and the influence of transverse or longitudinal roughness to the journal bearing is in reverse trend. In general, the critical value of length-to-diameter is 1.1.  相似文献   

14.
In this paper, the effect of micropolar fluid on the static and dynamic characteristics of squeeze film lubrication in finite porous journal bearings is studied. The finite modified Reynolds equation is solved numerically using the finite difference technique and the squeeze film characteristics are obtained. According to the results obtained, the micropolar fluid effect significantly increases the squeeze film pressure and the load-carrying capacity as compared to the corresponding Newtonian case. Under cyclic load, the effect of micropolar fluid is to reduce the velocity of the journal centre. Effect of porous matrix is to reduce the film pressure, load-carrying capacity and to increase the journal centre velocity.  相似文献   

15.
The combined effects of surface roughness and flow rheology on the linear stability of a rigid rotor supported on short-length journal bearings are analyzed. The modified Reynolds equation and the rotor motion equation are linearized about the equilibrium position and the fluid film is modeled as spring and damping elements. From the characteristic equation, the instability threshold is then obtained with various surface roughness parameters (standard derivation, σ, and Peklenik number, γ), flow rheology (power-law index, n) and eccentricity ratios (). The results show that the size of the stability regions of different roughness patterns has the following characteristics: longitudinal (γ>1)>isotropic (γ=1)>smooth>transverse (γ<1). The stability of the bearing system deteriorates with decreasing power-law index. Moreover, there are crossing points in the vicinity of =0.45 among the curves of dimensionless speed parameter ( ) associated with various power-law indices and surface roughness parameters.  相似文献   

16.
The paper uses Christensen's stochastic theory to study the effects of surface roughness in a narrow porous journal bearing. An exact solution, valid for arbitrary wall thickness, is given for the film pressure and pressure in the bearing material. The results are compared with the approximate solutions, and the range of various influencing parameters, for which the approximate analysis is satisfactory from a practical point of view is determined.  相似文献   

17.
A numerical solution for the elastohydrodynamic lubrication of finite journal bearings is presented. Couple stress effects resulting from blending the lubricant with various additives are considered. Elrod's cavitation algorithm, which automatically predicts film rupture and reformation in the bearings, is implemented in the solution scheme. A simple elastic model is used to describe the elastic deformation of the bearing liner. Furthermore, the effects of surface waviness on the performance of the bearing are incorporated into the analysis. A comprehensive study illustrates the effects of couple stress, liner flexibility, and surface waviness on the steady‐state performance of finite‐width journal bearings. The results show that these effects should be considered at higher values of the eccentricity ratio.  相似文献   

18.
An analytical method to determine the film temperature of circular journal bearings was developed, which considers the cavitation of the oil film and also recirculation and mixing of the lubricant. The results were verified experimentally. The theory is in good agreement with experiment over a wide range of operating conditions. The effects of journal speed, clearance ratio, lubricant viscosity and specific load on the bearing temperature were examined, and the following conclusions derived. (1) Tb,max, the maximum temperature on the bearing metal surface, increases considerably with the increase of speed and lubricant viscosity and with the decrease of clearance ratio. (2) With the increase of speed, the angular position of Tb,max varies considerably towards the direction of journal rotation from the upper stream side of the location of minimum film thickness, hmin, to the lower stream side of it. The change of angular position of Tb,max is greater than that of hmin. The contrary happens with decrease of the clearance ratio. (3) These characteristics of Tb,max correspond to those of the maximum temperature, Tf,max, in the oil film.  相似文献   

19.
A mathematical model to determine the stiffness and damping coefficients and the stability limit curves of a journal bearing in a non-laminar lubrication regime is described. The results show the flow regime influence on the dynamic characteristics of cylindrical bearings and on the stability of a rigid rotor on rigid supports.  相似文献   

20.
李锦灿 《机械》2007,34(2):23-25
建立了二自由度汽车动力学模型,运用虚拟激励法和精细逐步积分法计算了车辆在路面不平度作用下对路面的动载荷,并通过对算例的分析,考察了车速和路面不平度对车辆动载荷变化的影响,及汽车悬架减振器阻尼和动载系数之间的关系.结果表明该方法可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号