首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogenation of crambe oil, mainly an α,α’-dierucoyl triglyceride, in the presence of cadmium promoted copper-chromite provides long chain waxes being sought as sperm whale oil replacements. Gas liquid chromatography and gas chromatography-mass spectrometry analyses of secondary products indicate, however, that reduction proceeds rather differently from Adkins-type hydrogenations of triglycerides over copper-chromium oxide catalysts. Monoand diunsaturated alkenes ranging from C16-C24, odd chain lengths included, constitute ca. 1% of the product. Esters of crambe acids with methyl, ethyl, n-propyl, and isopropyl alcohols account for less than 5%. These alcohols and traces of 1,2-propanediol from the hydrogenolysis of glycerol occur in either the head gas or the reaction mixture or both. In contrast to published results for Adkins-type hydrogenations of triglycerides, n-propyl alcohol is far more abundant than isopropyl alcohol or 1,2-propanediol. Isopropyl esters of C-18 acids are not present, and those of C-22 acids constitute no more than 2% of the total esters. Low proportion of isopropyl esters and enrichment of C-22 acids in the secondary products compared with C-18 acids suggest that the acyl substituent at the β-position of glycerol is eliminated during hydrogenation of crambe oil with a Cd−Cu−Cr catalyst. Presented at the AOCS Meeting, Mexico City, April 1974. ARS, USDA.  相似文献   

2.
Composition of several coccid waxes has been determined by means of alumina and gas-liquid chromatography.Coccus ceriferus wax is a mixture of the esters of C26 and C28 alcohols with C24, C26 and C28 acids.Tachardia lacca wax has a high percentage of free alcohols (essentially C28 alcohol);Gascardia madagascariensis wax contains a large proportion of free acids. In addition to C26, C32 and C34 normal chain acids, there are several C30, C32 and C34 hydroxy acids, in which the hydroxyl function is situated in the middle of the hydrocarbon chain. Small proportions of odd and even hydrocarbons are present in all of the waxes investigated.  相似文献   

3.
A chromatographic method is described to measure the crystallizable wax content of crude and refined sunflower oil. It can also be applied to any other vegetable oil. The preparative liquid chromatography step on a glass column containing a silica gel adsorbent superimposed upon a silver nitrate-impregnated silica gel support is used to isolate a wax fraction which is then analyzed by gas chromatography. The recovered wax fraction contains, in addition to the crystallizable waxes, hydrocarbons and other compounds with gas chromatographic retention times corresponding to waxes with chain lengths C34−C42. These compounds are short-chain saturated waxes in fruit oils, such as grapeseed and pomace. In seed oils such as sunflower, soybean or peanut, the compounds initially referred to as “soluble esters” are identified as monounsaturated waxes, esters of long-chain saturated fatty acids, and a monounsaturated alcohol, mainly eicosenoic alcohol. Such waxes are absent from corn or rice bran oils.  相似文献   

4.
The fatty acids and nonsaponifiable lipids ofEimeria tenella oocysts were analyzed by gas liquid chromatography and combined gas liquid chromatographymass spectrometry. The fatty acids detected were identified as C14∶0, C16∶0, C16∶1, C18∶0, C18∶1, and C18∶2. Though the wt of the fatty acid fraction decreased during sporulation from 91 μg per 106 oocysts to 47 μg per 106 oocysts, the relative amounts of these fatty acids did not change appreciably. The nonsaponifiable lipids ofE. tenella consisted of cholesterol and unbranched primary alcohols of 22, 24, 26, 28, 30, and 32 carbons. Mass fragmentography demonstrated that each species of alcohol consisted of saturated and monounsaturated derivatives. Trimethylsilyl ethers of fatty alcohols were found to offer several important advantages over free alcohols for mass spectrometric characterization. Before sporulation, most fatty alcohols were in the oocyst wall. During sporulation, the wt of the nonsaponifiable lipids increased from 16 μg per 106 oocysts of 44 μg per 106 oocysts due largely to synthesis of C24 and C26 alcohols. The newly synthesized fatty alcohols were not deposited in the oocyst wall.  相似文献   

5.
The fatty acid composition of partially hydrogenated arachis (HAO), partially hydrogenated soybean (HSO) and partially hydrogenated herring (HHO) oils and of a normal, refined arachis oil (AO) was studied in detail by means of direct gas liquid chromatography, ultraviolet and infrared spectrophotometry and by thin layer chromatography fractionation on silver nitrate-silica gel plates followed by gas liquid chromatography. It was shown that the partially hydrogenated oils all contained fatty acids withtrans double bonds. In the plant oils, thetrans acids were present mainly as elaidic acid. The HHO showed an almost equal distribution betweentrans 18∶1 ω9,trans 20∶1 ω>9 andtrans 22∶1 ω>9. Sometrans configuration was also found in the C20-and C22-dienes and trienes of the HHO. In all the oils, conjugated fatty acids were present in minor amounts only (<0.5%). Special attention was given to the ω-acids known to be of specific nutritional value. The HSO contained about 32% linoleic acid, whereas the content ofcis, trans+trans, cis andtrans, trans octadecadienoic isomers was 1.7% and 0.5%, respectively. The amount of linoleic acid in the HSO was even higher than that of AO (29%). The HAO contained only 0.8% 18∶2 ω6 (linoleic acid). Further, two 18∶2 fatty acids with ω>6, acis, cis and atrans, trans isomer, were present in small amounts. The HHO contained 0.5% 18∶2 ω6 (linoleic acid). Isomers of 18∶2 ω>6 were also found in the HHO. They may be hydrogenation products of higher unsaturated C18-acids orginally present. All the C20- and C22-dienes and trienes were shown to have an ω-chain greater than 6. Fatty acids with ω6-structure were not formed during partial hydrogenation of the oils studied.  相似文献   

6.
Soapstock from alkaline refining of coconut oil was acidified, and the resulting acid water after neutralization was subjected to gas chromatography, electron-ionization and chemical-ionization mass spectroscopy, and high-performance liquid chromatography. The chief low-molecular weight organic components were C4−C18 fatty acids, hydroxylated acids, and sugar alcohols. The prevalence of acids and total absence of phosphate compounds make coconut acid water different in composition from the acid waters from other soapstocks.  相似文献   

7.
The steryl ester and phospholipid fractions of the marine spongeAgelas conifera were isolated and analyzed. The fatty acyl components of the steryl ester and phospholipid fractions as determined by gas chromatography and gas chromatography/mass spectrometry were very similar and consisted of 56.8 and 62.7% of C14−C20 acids (normal; branched, especiallyiso andanteiso; and monounsaturated, particularly Δ9 and Δ11 acids) and of 43.1 and 35.5% of C24−C26 acids (Δ5,9 diunsaturated acids), respectively. The major constituent fatty acids detected were 13-methyltetradecanoic,n-hexadecanoic, 10-methylhexadecanoic, 11-octadecenoic, 12-methyloctadecanoic, 5,9-pentacosadienoic and 5,9-hexacosadienoic acids. The phospholipids isolated were identified as phosphatidylcholine (37%), phosphatidylserine (34%), phosphatidylethanolamine (16%) and phosphatidylinositol (11%). The distribution of fatty acids within the phospholipid classes was also determined.  相似文献   

8.
Crambe abyssinica andLunaria annua, members of the Cruciferae family, have seed oil glycerides containing ca. 55–65% of C22 and C24 unsaturated fatty acids. Fatty acids were prepared by saponification; fatty alcohols, by sodium reduction of glycerides; liquid wax esters, byp-toluenesulfonic acid-catalyzed reaction of fatty acids with fatty alcohols; and methyl esters, by reaction of fatty acids with diazomethane. Solid hydrogenated glyceride oils and wax esters were compared with several commercial waxes. Chemical and physical constants were determined for the seed oils and their derivatives. Position of unsaturation in theCrambe fatty acids was determined by gas chromatographic analysis of the permanganate-periodate degradation products. The major dicarboxylic acid was brassylic (C13), proving the docosenoic acid to be erucic. Presented in part at the AOCS meeting in New Orleans, La., 1962. A laboratory of the No. Utiliz. Res. & Dev. Div., ARS, U.S.D.A.  相似文献   

9.
Skin-surface lipids from the monkeyMacaca fascicularis are composed of sterol esters (38%), cholesterol (4%) and two types of wax diesters, identified as Type II (IIa and IIb, 17% and 40%, respectively). Type IIa contained diesters of 1,2-alkanediols esterified with two molecules of long-chain (C14−C34) fatty acids having straight and branched chains. In the diesters IIa, fatty acids shorter than C19 predominated in position 1, and fatty acids longer than C20 predominated in position 2. Type IIb contained diesters of 1,2-alkanediols esterified with C4 and C5 branched-chain fatty acids (predominantly isovaleric acid) at position 1 and long-chain (C14−C27) acids, having straight and branched chains, at position 2. The shortchain acids were converted to 2-nitrophenylhydrazides and analyzed by high-performance liquid chromatography (HPLC). Ammonia chemical ionization (CI)-gas chromatography (GC)-mass spectrometry (MS) resolved the intact diesters IIb into 12 peaks corresponding to molecular weights ranging from 597 to 748, and showed that the molecular species, such as C21−C16−C5 (diol, fatty acid in position 2, fatty acid in position 1), C22−C16−C5 and C23−C16−C5, were prevalent. The fatty acids from both diesters were mostly (>98%) saturated. The 1,2-alkanediols from both diesters consisted of C16−C26 saturated straight- and branched-chain components. The acyl groups of sterol esters contained 86% C14−C34 branched-chain acids. The unsaturated fatty acids (5.4%) belonged to a straight-chain monoenoic series having extremely long chains (C18−C34). The branched-chain structures in the fatty acids and diols were iso and anteiso. These results show the species-specific profile for the skin-surface lipid synthesis.  相似文献   

10.
Open-tubular gas chromatography was carried out on fatty acids and alcohols obtained from wax esters of the orange roughy,Hoplostethus atlanticus, caught at sea off New Zealand. The major (above 5%) components were 16∶1(n−7), 18∶1(n−9) and (n−7), 20∶1(n−9) and (n−7), and 22∶1(n−11, n−13) as fatty acids, and 16∶0, 18∶0, 18∶1(n−9), 20∶1(n−9) and (n−7), and 22∶1(n−11, n−13) as fatty alcohols. The total percentages of the minor components were 10% in the acids and 26% in the alcohols. The 22∶1/20∶1 ratio of the fatty alcohols obtained in this study was less than 1.0, although the ratio for the Atlantic orange roughy has been reported as being greater than 1.0. The contents of polyenes were as low as 2.48% in the acids and 0.95% in the alcohols, but their compositions showed some specific features. The percentages of the C16−C22 dienes in the total polyenes were remarkably high, 57.7% of these acids and 53.1% of these alcohols. The most important dienes were 18∶2(n−6) in the acids and 20∶2(n−6) in the alcohols.  相似文献   

11.
Three groups of diesters have been isolated and identified in the lipids of steer meibomian glands. The first group, designated as α Type I, with the abbreviated formula FA-αOHFA-FA1c, consisted of α-hydroxy fatty acids esterified to fatty acids and fatty alcohols in the approximate molar ratio 1∶1∶1. The second group, designated as ω Type I-St, with the abbreviated formula FA-ωOHF A-St, consisted of ω-hydroxy fatty acids esterified to fatty acids and sterols in the approximate molar ratio 1∶1∶1. The third group, designated as α,ω Type II, with the abbreviated formula FA-α,ωdiol-FA, consisted of α,ω-diols esterified to 2 moles of fatty acids. The sum of the different diesters comprised about 9% of total steer meibomian lipids. Capillary GLC of the fatty acids of αType I diesters showed the fatty acids to be a family with a two-cluster profile, one at C12 to C20 and the other at C21 to C31, with anteiso chains predominating. Fatty acids from ωType I-St and α,ωType II diesters gave mainly a one-cluster profile in the short long chain, C23 to C30, with anteiso chains predominating, while the α-hydroxy fatty acids were short chain C13 to C18 acids with C16 predominating. The sterols in diesters ωType I-St were cholesterol (∼60%), Δ7 cholestenol (∼35%) and an unidentified compound (∼5%) with a GLC retention time slightly longer than Δ7 cholestenol on SE-30 phase. The ω-hydroxy fatty acids and α,ω-diols both were of exceedingly long chain lengths, C29−C38, and showed similar GLC profiles. Two types of triesters comprising approximately 1% of total steer meibomian lipids have been isolated but incompletely characterized. In terms of molar ratios, one group of triesters gave fatty acids:ω-hydroxy fatty acids:α-hydroxy fatty acids:sterols + fatty alcohols as approximately 1∶1∶1∶1. The other contained fatty acids, α-hydroxy fatty acids and α,ω-diols in what appears to be a complex mixture of several triesters. Diesters ωType I and α,ωType II also were found in human meibum. Hitherto these two diesters have not been found in any animal tissue.  相似文献   

12.
Two unusual lipid classes were detected by thin-layer chromatography in the neutral lipids derived from goat cauda-epididymal sperm plasma membrane. The lipids were identified as wax esters and 1-O-alkyl-2,3-diacylglycerols based on chromatographic properties, identity of their hydrolysis products, and infrared/1H nuclear magnetic resonance spectral evidence. The membrane containedca. 3 and 5 μg/mg protein of wax esters and alkyldiacylglycerols, respectively. The relative proportions of wax esters and alkyldiacylglycerols in the total neutral lipids were 1.5% and 2.4%, respectively. The lipids contained fatty acids with chain lengths of C14 to C22. The major fatty acids of the wax esters were 14∶0, 16∶0, 16∶1ω7, 18∶0 and 18∶1ω9. The fatty acids in alkyldiacylglycerol were 16∶0, 18∶0, 22∶5ω3 and 22∶6ω3. Alkyldiacylglycerol was particularly rich in docosahexaenoic acid 22∶6ω3) representing 30% of the total fatty acids. The alcohols of wax ester were all saturated with C20–C29 carbon chains. The deacylated products derived from alkyldiacylglycerols were identified as hexadecyl, octadecyl and octadec-9′-enyl glycerol ethers.  相似文献   

13.
Various factors that could affect analytical values for beeswax, and so also detection of adulteration, have been investigated. Ester value determination was checked using synthetic monoesters. Gas liquid chromatographic analysis of overheated wax confirmed that free acids decreased on heating and also showed loss of unsaturated hydrocarbons and of monoesters. The saponification cloud point detected as little as 1% of a paraffin mp 83 C (chain length C20–C60) but only 6% or more of a paraffin mp 53 C (chain length C20–C35). Gas liquid chromatographic analysis of the hydrocarbon fraction of waxes containing these paraffins detected 1% of either paraffin, but only the low melting paraffin was estimated accurately. The presence of 2.5% of carnauba wax in beeswax was detected and estimated by gas liquid chromatography. Issued as NRCC No. 13173.  相似文献   

14.
The positions of double bond in the monounsaturated C15−C32 fatty acids ofMycobacterium tuberculosis H37Ra were established by gas chromatography/mass spectrometry of the ozonized esters and their pyrrolidide derivatives. The monounsaturated C15−C21 fatty acids had the double bond primarily at the Δ9 position while the monounsaturated longer chain fatty acids (C22−C32) had the double bond in several positions. Many of the latter acids, especially the odd-numbered series, were very complex isomeric mixtures. Quantitation showed the most abundant even-numbered long chain fatty acid isomers to be as follow: C22, Δ4; C24, Δ5; C26, Δ7 and Δ9; C28, Δ9; C30, Δ11 and Δ13; C32, Δ13 and Δ15.  相似文献   

15.
The BF3−MeOH reagent for ozonolysis of ethylenic unsaturation does not oxidize alcohols. It is therefore feasible to determine the position of ethylenic unsaturation in long chain fatty alcohols of synthetic or natural origin by recovering the methyl ester products intact and silylating the alcohol function of half-ester, half-alcohol, products prior to gas liquid chromatographic analysis. The C3 fragment from methylene-interrupted alkyl chains is not recovered, but, by first reducing carboxyl ester groups to alcohols, the terminal difunctional products can be identified in nonmethylene-interrupted dienoic fatty acids. The seaweedCladophora rupestris is shown to contain Δ5,Δ11-,Δ8,Δ11-, and Δ11, Δ14- as well as Δ9,Δ12-octadecadienoic acid.  相似文献   

16.
Cast skins of the Florida indigo snake (Drymarchon corais) yielded up to 8% chloroform: methanol-extractable lipid, which was found to contain methyl ketones (20%), free secondary alcohols (15%), free primary alcohols (30%), free cholesterol (15%), free fatty acids (5%), and hydrocarbons (5%). The hydrocarbons appeared to be contaminants, because gas chromatography revealed a distribution characteristic of petroleum hydrocarbons. The methyl ketones were predominantly monounsaturated, with double bonds almost exclusively in the ω7 position. The structures of the secondary alcohols corresponded with the methyl ketones in regard to chain length distribution, location of the oxygen function in the 2 position, and the proportion and position of unsaturation. The primary alcohols were also predominantly straight, odd-carbon, unsaturated compounds, with ω7 double bonds, but with chain lengths principally of 29 and 31 carbon atoms. The free fatty acids were mainly even-carbon monounsaturated compounds of 16–20 carbon atoms with double bonds mainly in the Δ9-position. Inspection of the lipid structures obtained from the Indigo snake suggest a biogenetic relationship whereby palmitic and palmitoleic acids are extended in chain length mainly to 32 and 34 carbonatom fatty acids. Retention or introduction of an oxygen function in the 3 position, followed by decarboxylation, could then yield structures corresponding with the methyl ketones and the related secondary alcohols. Insertion of an oxygen atom between carbons 2 and 3 of the methyl ketones, followed by loss of the two carbon atoms thereby isolated from the chain, would produce the series of odd-carbon primary alcohols that were observed.  相似文献   

17.
Skin surface lipids from the sides of male and female horses (Equus caballus) were collected in acetone and analyzed by thin layer chromatography and gas liquid chromatography. The sole components in both sexes were cholesterol, cholesteryl esters and the lactones of 32-, 32- and 36-carbon ω-hydroxy acids, each including a methyl group in the n−1 position. Most of the lactones were mono-unsaturated (either n−8 or n−10), but small amounts of saturated and dienoic species were present. A pooled sample of the skin surface lipids contained 14% cholesterol, 38% cholesteryl esters and 48% lactones.  相似文献   

18.
Anna Johansson 《Lipids》1979,14(3):285-291
The composition and proportion of free sterols and sterol esters in crude sunflower and poppy seed oils were determined, using preparative thin layer chromatography followed by gas chromatography with cholesterol as an internal standard. Free sterols and sterol esters were also isolated in a liquid fraction obtained by low temperature crystallization (−80 C) of the oils and enriched with minor lipid classes. This enrichment procedure provided a liquid fraction suitable for studies of minor components in the oils. However, selectivity towards sterol esters was observed since sterols esterified to very long chain fatty acids (C20–C24) were preferentially retained in the precipitate. The proportions of free and esterified sterols were found to be 0.34 and 0.28%, respectively, in the sunflower oil, whereas the corresponding figures for poppy seed oil were 0.33% and 0.05%. Sunflower oil was characterized by a relatively high percentage of Δ7-sterols, preferentially obtained in the esterified fraction, and by very long chain saturated fatty acids of sterol esters. The sterols in poppy seed oil were composed almost entirely of campesterol, stigmasterol, sitosterol and Δ5-avenasterol, although their percentage distributions were remarkably different in the free and esterified fraction.  相似文献   

19.
R. G. Ackman 《Lipids》1977,12(3):293-296
Ozonolysis of monoethylenic fatty acids in BF3−MeOH, or in MeOH with subsequent addition of BF3−MeOH, gives oxidative fission acid products as methyl esters in a nominal 100% yield and a purity ≥98% of principal acid products. The in situ esterification step requires ca. 1 hr of heating with 7 or 14% BF3, but other time requirements are much less, totalling no more than half an hour. Different liquid phases for open-tubular gas liquid chromatography of some products are compared.  相似文献   

20.
Lipids were extracted from the mandibular fat body (jaw), the fatty forehead (melon), and the dorsal blubber of a Pacific beaked whale (Berardius bairdi) and separated into lipid classes by preparative thin layer chromatography. The head fats were mixtures of wax esters and triglycerides with a very small amount of diacyl glyceryl ether. The blubber fat contained 97% was ester and 3% triglyceride. Gas liquid chromatography (GLC) of the intact lipid classes indicated an unusually low C26–C30 range for most of the jaw and melon wax esters compared to the more normal C32–C40 molecules found in the blubber. Distinctive lower molecular weight C24–C40 triglycerides occurred in the head fats vs. the usual C44–C58 range in the blubber. Most diacyl glyceryl ethers were in the C35–C46 range, below the molecular weight of hexadecyldipalmitoyl glyceryl ether (C48). GLC of the derived fatty acid methyl esters showed that the lower molecular weight neutral lipids in the head fats were due to high levels of iso-10∶0, n−10∶0, iso-11∶0, iso-12∶0, n−12∶0, and iso-13∶0 acids. The wax ester fatty alcohols and the alkoxy chains of the glyceryl ethers were mostly the C14–C20 chain lengths commonly observed in marine organisms. The distinctive medium chain neutral lipids in the jaw and melon fats of this whale may be related to the postulated acoustical role of these tissues in echolocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号