首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the dynamics of quantum correlations of qubit–qutrit systems under various decoherent channels. It is shown that the multi-local and local decoherent channels bring different influences for the dynamics of quantum correlations measured by negativity, quantum discord and geometric discord, which depend on the initial state parameters and the properties of the decoherent channels. We put emphasis on the phenomena such as entanglement sudden death, sudden transition between classical and quantum decoherence and stable quantum discord and geometric discord.  相似文献   

2.
The setting of Hilbert resolution spaces is used to explore the properties of nonlinear functions. Natural generalizations of the properties; causality, dissipativity, passivity, and scattering are formulated and interrelationships explored.  相似文献   

3.
Pattern Analysis and Applications - Local tangent space alignment (LTSA) is a famous manifold learning algorithm, and many other manifold learning algorithms are developed based on LTSA. However,...  相似文献   

4.

This paper proposes an efficient semi-quantum private comparison protocol (SQPC) using single photons, which allows two classical participants to securely compare the equality of their secret with the help of an almost-dishonest third party. Because of the use of single photons, the SQPC is more practical and the qubit efficiency of the proposed protocol is higher than the existing semi-quantum private comparison protocols. Moreover, the proposed protocol can resist several well-known attacks including outsider and insider’s attacks.

  相似文献   

5.
The approximation method in a Hilbert space is applied to the analysis of a generalized non-singular Sturm-Liouville eigenvalue problem. The variable coefficients in the system equation and the solution are approximated by a suitable linear independent basis, the expansion coefficients are explicitly expressed as a backward recursive formula and the eigenvalues are obtained by solving an algebraical characteristic equation. The computation is simple and straightforward.  相似文献   

6.
In this paper, we consider an ecosystem in which two disease-affected populations thrive and in which the epidemics can spread from one species to the other one by contact. The feasibility and stability conditions of the equilibria of the system are investigated analytically. The model does not possess Hopf bifurcations. Numerical simulations are performed to investigate the role of the main epidemiological and demographic parameters in the model, thus discovering that the predation of healthy or diseased predators on an infected prey allows some kind of control of the prey, if the latter, for instance, represents a pest.  相似文献   

7.
We present some compact circuits for a deterministic quantum computing on the hybrid photon–atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.  相似文献   

8.
9.
We investigate the quantum phase transition of an atomic ensemble trapped in a single-mode optical cavity via the geometric phase and quantum Fisher information of an extra probe atom which is injected into the optical cavity and interacts with the cavity field. We also find that the geometric quantum correlation between two probe atoms exhibits a double sudden transition phenomenon and show this double sudden transition phenomenon is closely associated with the quantum phase transition of the atomic ensemble. Furthermore, we propose a theoretical scheme to prolong the frozen time during which the geometric quantum correlation remains constant by applying time-dependent electromagnetic field.  相似文献   

10.
Both classical and quantum version of two models of price competition in duopoly market, the one is realistic and the other is idealized, are investigated. The pure strategy Nash equilibria of the realistic model exists under stricter condition than that of the idealized one in the classical form game. This is the problem known as Edgeworth paradox in economics. In the quantum form game, however, the former converges to the latter as the measure of entanglement goes to infinity.  相似文献   

11.
Quantum Information Processing - We study three independent pairs of Jaynes–Cummings systems such that two atoms might be correlated with each other but the third atom is uncorrelated with...  相似文献   

12.
We construct an entangled quantum Otto engine based on spin-1/2 systems undergoing Dzyaloshinski–Moriya (DM) interaction within a varying magnetic field. We investigate the influence of the DM interaction on basic thermodynamic quantities, including heat transfer, work done, and efficiency and find that the DM interaction importantly influences the engine’s thermodynamics. We obtain an expression for engine efficiency, finding it to yield the same efficiency for antiferromagnetic and ferromagnetic coupling. A new upper bound, nontrivially consistent with the second law of thermodynamics, is derived for engine efficiency in the case of non-zero DM interaction.  相似文献   

13.
A Rasiowa-Sikorski system is a sequence-type formalization of logics. The system uses invertible decomposition rules which decompose a formula into sequences of simpler formulae whose validity is equivalent to validity of the original formula. There may also be expansion rules which close indecomposable sequences under certain properties of relations appearing in the formulae, like symmetry or transitivity. Proofs are finite decomposition trees with leaves having “fundamental”, valid labels. The author describes a general method of applying the R-S formalism to develop complete deduction systems for various brands of C.S and A.I. logic, including a logic for reasoning about relative similarity, a three-valued software specification logic with McCarthy's connectives and Kleene quantifiers, a logic for nondeterministic specifications, many-sorted FOL with possibly empty carriers of some sorts, and a three-valued logic for reasoning about concurrency.  相似文献   

14.
In this paper, we study thermal quantum correlations as quantum discord and entanglement in bipartite system imposed by external magnetic field with Herring–Flicker coupling, i.e., \(J(R)=1.642 e^{-2 R} R^{5/2}+O(R^{2}e^{-2R})\). The Herring–Flicker coupling strength is the function of R, which is the distance between spins and systems carry XXX Heisenberg interaction. By tuning the coupling distance R, temperature and magnetic field quantum correlations can be scaled in the bipartite system. We find the long sustainable behavior of quantum discord in comparison with entanglement over the coupling distance R. We also investigate the situations, where entanglement totally dies but quantum discord exists in the system.  相似文献   

15.
The first step of quantum measurement procedure is known as premeasurement, during which correlation is established between the system and the measurement apparatus. Such correlation may be classical or nonclassical in nature. One compelling nonclassical correlation is entanglement, a useful resource for various quantum information theoretic protocols. Quantifying the amount of entanglement, generated during quantum measurement, therefore, seeks importance from practical ground, and this is the central issue of the present paper. Interestingly, for a two-level quantum system, we obtain that the amount of entanglement, measured in term of negativity, generated in premeasurement process can be quantified by two factors: skew information, which quantifies the uncertainty in the measurement of an observable not commuting with some conserved quantity of the system, and mixedness parameter of the system’s initial state.  相似文献   

16.
The decoherence and dephasing rate of charge qubits in systems based on double and triple SiGe quantum dots are studied. At the short time limit, electron–phonon interaction causes an incomplete decay of the off-diagonal density matrix elements. Long-time relaxation decay dominates over dephasing at large times. The triple quantum dot system with the same interdot distance demonstrates lower relaxation rate in the wide range of parameters.  相似文献   

17.
We study a two-qutrit system which is described by the Bose–Hubbard Hamiltonian with two external magnetic fields. The entanglement (through the negativity) and quantum correlation (through the geometric discord) between the qutrits are calculated as functions of the magnetic field (B), the temperature (T), the linear and nonlinear coupling constants among two spins (J and K). Then, we compare the effect of these parameters on entanglement and quantum correlation of this system. For some values of system parameters, we show that the negativity is zero while, the geometric discord is nonzero. Moreover, we investigate the effect of finite external magnetic fields direction on these measures. This study leads to some new and interesting results as well.  相似文献   

18.
Cybernetics and Systems Analysis - The Hermite–Birkhoff interpolation problem for a nonlinear operator in the Hilbert space is considered. For this problem, the theorem on the interpolation...  相似文献   

19.
The behavior of total quantum correlations (discord) in dimers consisting of dipolar-coupled spins 1/2 are studied. We found that the discord $Q=0$ at absolute zero temperature. As the temperature $T$ increases, the quantum correlations in the system increase at first from zero to its maximum and then decrease to zero according to the asymptotic law $T^{-2}$ . It is also shown that in absence of external magnetic field $B$ , the classical correlations $C$ at $T\rightarrow 0$ are, vice versa, maximal. Our calculations predict that in crystalline gypsum $\hbox {CaSO}_{4}\cdot \hbox {2H}_{2}{\hbox {O}}$ the value of natural $(B=0)$ quantum discord between nuclear spins of hydrogen atoms is maximal at the temperature of 0.644  $\upmu $ K, and for 1,2-dichloroethane $\hbox {H}_{2}$ ClC– $\hbox {CH}_{2}{\hbox {Cl}}$ the discord achieves the largest value at $T=0.517~\upmu $ K. In both cases, the discord equals $Q\approx 0.083$  bit/dimer what is $8.3\,\%$ of its upper limit in two-qubit systems. We estimate also that for gypsum at room temperature $Q\sim 10^{-18}$  bit/dimer, and for 1,2-dichloroethane at $T=90$  K the discord is $Q\sim 10^{-17}$  bit per a dimer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号