首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.  相似文献   

2.
The novel quantum dialogue (QD) protocol by using the three-dimensional Bell states and entanglement swapping (Wang et al. in Quantum Inf Process 15(6):2593–2603, 2016) is analyzed. It is shown that there is the information leakage problem in this QD protocol. To be specific, one quarter information of the secret messages exchanged is leaked out unconsciously. Afterward, it is improved to a truly secure one without information leakage. Besides, the security of the improved QD protocol is analyzed in detail. It is shown that the improved QD protocol has some obvious features compared with the original one.  相似文献   

3.
We present a refined entanglement concentration protocol (ECP) for an arbitrary unknown less-entangled four-electron-spin cluster state by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. In our ECP, the parties obtain not only the four-electron-spin systems in the partial entanglement with two unknown parameters, but also the less-entangled two-electron-spin systems in the first step. Utilizing the above preserved systems as the resource for the second step of our ECP, the parties can obtain a standard cluster state by keeping the robust odd-parity instances with two parity-check gates. Meanwhile, the systems in the rest three instances can be used as the resource in the next round of our ECP. The success probability of our ECP is largely increased by iteration of the ECP process. Moreover, all the coefficients of our ECP are unknown for the parties without assistance of extra single electron-spin, so our ECP maybe has good applications in quantum communication network in the future.  相似文献   

4.
A scheme is proposed to deterministically generate a two atoms entangled state and a multiple atoms W state in two coupled cavities by one step. In the scheme, the populations of cavities and atoms excited are negligible under certain conditions with an adiabatic passage along a dark state. Furthermore, the interaction time needs not to be controlled exactly and keeps unchanged with the increasing of the number of qubits. In consideration that only one of the atoms needs to be operated, the realization in experiment can be relatively easier.  相似文献   

5.
A recent paper (Chuan Wang in Phys Rev A 86:012323, 2012) discussed an entanglement concentration protocol (ECP) for partially entangled electrons using a quantum dot and microcavity coupled system. In his paper, each two-electron spin system in a partially entangled state can be concentrated with the assistance of an ancillary quantum dot and a single photon. In this paper, we will present an efficient ECP for such entangled electrons with the help of only one single photon. Compared with the protocol of Wang, the most significant advantage is that during the whole ECP, the single photon only needs to pass through one microcavity which will increase the total success probability if the cavity is imperfect. The whole protocol can be repeated to get a higher success probability. With the feasible technology, this protocol may be useful in current long-distance quantum communications.  相似文献   

6.
Quantum Information Processing - We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities...  相似文献   

7.
We demonstrate the advantages of an optical parity gate using weak cross-Kerr nonlinearities (XKNLs), quantum bus (qubus) beams, and photon number resolving (PNR) measurement through our analysis, utilizing a master equation under the decoherence effect (occurred the dephasing and photon loss). To generate Bell states, parity gates based on quantum non-demolition measurement using XKNL are extensively employed in quantum information processing. When designing a parity gate via XKNL, the parity gate can be diversely constructed according to the measurement strategies. In practice, the interactions of XKNLs in optical fiber are inevitable under the decoherence effect. Thus, by our analysis of the decoherence effect, we show that the designed parity gate employing homodyne measurement would not be expected to provide reliable quantum operation. Furthermore, compared with a parity gate using a displacement operator and PNR measurement, we conclude there is experimental benefit from implementation of a parity gate via qubus beams and PNR measurement under the decoherence effect.  相似文献   

8.
Taking the advantage of weak measurement and quantum measurement reversal, we propose a scheme to enhance the fidelity of transferring quantum state from one atom trapped in cavity to another distant one trapped in another cavity which is coupled by an optical fiber. It is turned out that the fidelity can be greatly improved even when the system is under serious dissipation. Moreover, the scheme works in both the strong-coupling and weak-coupling regimes. It is also robust to the ratio of the coupling constant between the atoms and the cavity modes to the coupling constant between the fiber and cavity modes. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.  相似文献   

9.
Based on the assumption that the receiver Bob can apply any unitary transformation, Horodecki et al. (Phys Lett A 222:21–25, 1996) proved that any mixed two spin-1/2 state which violates the Bell-CHSH inequality is useful for teleportation. Here, we further show that any X state which violates the Bell-CHSH inequality can also be used for nonclassical teleportation even if Bob can only perform the identity or the Pauli rotation operations. Moreover, we showed that the maximal difference between the two average fidelities achievable via Bob’s arbitrary transformations and via the sole identity or the Pauli rotation is 1/9.  相似文献   

10.
In this paper, a novel multi-party quantum private comparison protocol with a semi-honest third party (TP) is proposed based on the entanglement swapping of d-level cat states and d-level Bell states. Here, TP is allowed to misbehave on his own, but will not conspire with any party. In our protocol, n parties employ unitary operations to encode their private secrets and can compare the equality of their private secrets within one time execution of the protocol. Our protocol can withstand both the outside attacks and the participant attacks on the condition that none of the QKD methods is adopted to generate keys for security. One party cannot obtain other parties’ secrets except for the case that their secrets are identical. The semi-honest TP cannot learn any information about these parties’ secrets except the end comparison result on whether all private secrets from n parties are equal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号