首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We present a scheme for implementing discrete quantum Fourier transform (DQFT) with robustness against the decoherence effect using weak cross-Kerr nonlinearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating the controlled path and merging path gates that are formed with weak XKNLs and linear optical devices. To enhance feasibility under the decoherence effect, in practice, we utilize a displacement operator and photon-number-resolving measurement in the optical gate using XKNLs. Consequently, when there is a strong amplitude of the coherent state, we demonstrate that it is possible to experimentally implement the DQFT scheme, utilizing current technology, with a certain probability of success under the decoherence effect.  相似文献   

2.
Quantum logic operations can be implemented using nonlinear phase shifts (the Kerr effect) or the quantum Zeno effect based on strong two-photon absorption. Both approaches utilize three-level atoms, where the upper level is tuned on resonance for the Zeno gates and off-resonance for the nonlinear phase gates. The performance of nonlinear phase gates and Zeno gates are compared under conditions where the parameters of the resonant cavities and three-level atoms are the same in both cases. It is found that the expected performance is comparable for the two approaches despite the fundamental differences between the Zeno and Kerr effects.  相似文献   

3.
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.  相似文献   

4.
In this paper, we demonstrate the revival and robustness of quantum dynamics under local decoherent evolutions through investigating the dynamical behaviors of quantum correlation. The results show that in depolarizing channel, quantum discord damps faster and revivals after a dark interval of time, while the others will revival immediately at the critical point. In addition, in hybrid channel the declining initial condition can speed up the attenuation of quantum discord within a limited time, while it can enable trace distance discord and Bures distance discord to damp more smoothly. In this sense, quantum discord is typically less robust against decoherence than the others. Interestingly, nonlocality shows different decay rates in the vicinity of critical point. Additionally, we lastly provide a physical interpretation concerning these phenomena.  相似文献   

5.
The effect of noise on various protocols of secure quantum communication has been studied. Specifically, we have investigated the effect of amplitude damping, phase damping, squeezed generalized amplitude damping, Pauli type as well as various collective noise models on the protocols of quantum key distribution, quantum key agreement, quantum secure direct quantum communication and quantum dialogue. From each type of protocol of secure quantum communication, we have chosen two protocols for our comparative study: one based on single-qubit states and the other one on entangled states. The comparative study reported here has revealed that single-qubit-based schemes are generally found to perform better in the presence of amplitude damping, phase damping, squeezed generalized amplitude damping noises, while entanglement-based protocols turn out to be preferable in the presence of collective noises. It is also observed that the effect of noise depends upon the number of rounds of quantum communication involved in a scheme of quantum communication. Further, it is observed that squeezing, a completely quantum mechanical resource present in the squeezed generalized amplitude channel, can be used in a beneficial way as it may yield higher fidelity compared to the corresponding zero squeezing case.  相似文献   

6.
The restoration of three-qubit entanglement is investigated under the amplitude damping (AD) decoherence with environment-assisted measurement (EAM) and reversal weak measurement (RWM). The results show that there exists a critical strength of RWM dependent of the initial three-qubit entangled state under a given damping rate of the AD channel, i.e., if the selected RWM strength is higher than the critical strength, the entanglement will be reduced compared to one without RWM. Some three-qubit entangled states cannot be restored. We calculated the restorable condition of the initial entanglement and illustrated the valid area for three-qubit GHZ state and W state. Fortunately, an optimal strength of RWM corresponding to a certain damping rate of AD channels can be found within the valid area for a restorable initial state, by which a noise-infected entanglement can be restored to its maximum value. Particularly, when three qubits of W state are subjected to their respective AD channels, due to the symmetry of three qubits, the W state cannot be decohered provided the EAM is successful, and no RWM is required. This is beneficial to quantum communication over the noisy channel. Applying this protection regime to tripartite QSS and taking appropriate initial entangled state as the quantum channel, the fidelity of the shared state can be improved to the maximum 1 probabilistically. Thus, the decoherence effect of the noisy channels can be significantly suppressed or even avoided.  相似文献   

7.
A digital technology for generating seismic information from deep strata of the Earth is proposed. An intelligent hybrid distributed system is developed on the basis of the technology. By means of this system it becomes possible to combine monitoring of changes in technical state with generating warnings of every imaginable type of emergency in construction projects together with short-term prediction of earthquakes. Because of paralleling of the recognition of measurement information arriving from a set of local monitoring systems situated at significant distances from each other, the degree of reliability of the results obtained is increased.  相似文献   

8.
We employ the concepts of local quantum uncertainty and geometric quantum discord based on the trace norm to investigate the environmental effects on quantum correlations of two bipartite quantum systems. The first one concerns a two-qubit system coupled with two independent bosonic reservoirs. We show that the trace discord exhibits frozen phenomenon contrarily to local quantum uncertainty. The second scenario deals with a two-level system, initially prepared in a separable state, interacting with a quantized electromagnetic radiation. Our results show that there exists an exchange of quantum correlations between the two-level system and its surrounding which is responsible for the revival phenomenon of non-classical correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号