首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an optical scheme to prepare large-scale maximally entangled W states by fusing arbitrary-size polarization entangled W states via polarization-dependent beam splitter. Because most of the currently existing fusion schemes are suffering from the qubit loss problem, that is the number of the output entangled qubits is smaller than the sum of numbers of the input entangled qubits, which will inevitably decrease the fusion efficiency and increase the number of fusion steps as well as the requirement of quantum memories, in our scheme, we design a effect fusion mechanism to generate \(W_{m+n}\) state from a n-qubit W state and a m-qubit W state without any qubit loss. As the nature of this fusion mechanism clearly increases the final size of the obtained W state, it is more efficient and feasible. In addition, our scheme can also generate \(W_{m+n+t-1}\) state by fusing a \(W_m\), a \(W_n\) and a \(W_t\) states. This is a great progress compared with the current scheme which has to lose at least two particles in the fusion of three W states. Moreover, it also can be generalized to the case of fusing k different W states, and all the fusion schemes proposed here can start from Bell state as well.  相似文献   

2.
We propose a scheme for preparation of large-scale entangled GHZ states and W states with neutral Rydberg atoms. The scheme mainly depends on Rydberg antiblockade effect, i.e., as the Rydberg–Rydberg interaction strength and the detuning between the atom transition frequency and the classical laser frequency satisfies some certain conditions, the effective Rabi oscillation between the two ground states and the two excitation Rydberg states would be generated. The prominent advantage is that both two multiparticle GHZ states and two multiparticle W states can be fused in this model, especially the success probability for fusion of GHZ states can reach unit. In addition, the imperfections induced by the spontaneous emission is also discussed through numerical simulation.  相似文献   

3.
In this scheme, based on the weak cross-Kerr nonlinearity, an hyperconcentration protocol for the arbitrary partially hyperentangled N-particle Greenberger–Horne–Zeilinger (GHZ) state is presented. Considering the N photons initially in the nonmaximally hyperentangled GHZ state in which photons are entangled simultaneously in the polarization and the spatial-mode degrees of freedom, we can obtain the maximally hyperentangled N-particle GHZ state by the projection measurements on the additional photons. Numerical simulation demonstrates that by iterating the entanglement concentration process, we can improve the success probability of the scheme. Furthermore, we discuss the feasibility of the setups of the protocol, concluding that the present protocol is feasible with existing experimental technology. All these advantages make this scheme more efficient and more convenient in quantum communication.  相似文献   

4.
Different from the previous works on generating entangled states, this work is focused on how to transfer the prepared entangled states onto memory qubits for protecting them against decoherence. We here consider a physical system consisting of n operation qubits and 2n memory qubits placed in a cavity or coupled to a resonator. A method is presented for transferring n-qubit Greenberger–Horne–Zeilinger (GHZ) entangled states from the operation qubits (i.e., information processing cells) onto the memory qubits (i.e., information memory elements with long decoherence time). The transferred GHZ states are encoded in a decoherence-free subspace against collective dephasing and thus can be immune from decoherence induced by a dephasing environment. In addition, the state transfer procedure has nothing to do with the number of qubits, the operation time does not increase with the number of qubits, and no measurement is needed for the state transfer. This proposal can be applied to a wide range of hybrid qubits such as natural atoms and artificial atoms (e.g., various solid-state qubits).  相似文献   

5.
We propose a generation scheme of χ-type entangled states based on weak cross-Kerr nonlinearities. After Homodyne measurement, the individual photons can be entangled together with the help of coherent states. Assisted with classical feed-forward, the generation efficiency of the entangled state nearly approaches unity. Depending on the currently available optical elements and techniques such as beam splitters, reflection mirrors, polarization beam splitters and classical feed-forward, the present scheme is expectable to realize in experiment.  相似文献   

6.
We introduce a general method of gluing multi-partite states and show that entanglement swapping is a special class of a wider range of gluing operations. The gluing operation of two m and n qudit states consists of an entangling operation on two given qudits of the two states followed by operations of measurements of the two qudits in the computational basis. Depending on how many qudits (two, one or zero) we measure, we have three classes of gluing operation, resulting respectively in \(m+n-2\), \(m+n-1\), or \(m+n\) qudit states. Entanglement swapping belongs to the first class and has been widely studied, while the other two classes are presented and studied here. In particular, we study how larger GHZ and W states can be constructed when we glue the smaller GHZ and W states by the second method. Finally we prove that when we glue two states by the third method, the k-uniformity of the states is preserved. That is when a k-uniform state of m qudits is glued to a \(k'\)-uniform state of n qudits, the resulting state will be a \(\hbox {min}(k,k')\)-uniform of \(m+n\) qudits.  相似文献   

7.
A single state is a special state that entangles multi-state quantum systems and plays a significant role in the field of quantum computation. In this paper, we propose a scheme to realize the generation of single states for Rydberg atoms, where one Rydberg atom is trapped in an optical potential and the others are trapped in an adjacent optical potential. Moreover, combining Rydberg blockade and adiabatic-passage technologies, an N-atom singlet state can be generated with the interaction of an N-dimensional Rydberg atom and an (\(N-1\))-atom singlet state. Compared to previous schemes, the advantage of our proposal is that an N-particle N-level singlet state with \(N\ge 3\) may be realized more simply.  相似文献   

8.
In this work, we study a restricted (kn)-threshold access structure. According to this structure, we construct a group of orthogonal multipartite entangled states in d-dimensional system and investigate the distinguishability of these entangled states under restricted local operations and classical communication. Based on these properties, we propose a restricted (kn)-threshold quantum secret sharing scheme (called LOCC-QSS scheme). The k cooperating players in the restricted threshold scheme come from all disjoint groups. In the proposed protocol, the participants distinguish these orthogonal states by the computational basis measurement and classical communication to reconstruct the original secret. Furthermore, we also analyze the security of our scheme in three primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.  相似文献   

9.
An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.  相似文献   

10.
We propose a novel scheme for remote preparation of an arbitrary n-qubit state with the aid of an appropriate local \(2^n\times 2^n\) unitary operation and n maximally entangled two-qubit states. The analytical expression of local unitary operation, which is constructed in the form of iterative process, is presented for the preparation of n-qubit state in detail. We obtain the total successful probabilities of the scheme in the general and special cases, respectively. The feasibility of our scheme in preparing remotely multi-qubit states is explicitly demonstrated by theoretical studies and concrete examples, and our results show that the novel proposal could enlarge the applied range of remote state preparation.  相似文献   

11.
We propose an efficient scheme for remotely preparing an arbitrary n-qubit equatorial state via n two-qubit maximally entangled states. Compared to the former scheme (Wei et al. in Quantum Inf Process 16:260, 2017) that has the 50% successful probability when the amplitude factors of prepared states are \(2^{-n{/}2}\), the probability would be increased to 100% by using of our modified proposal. The feasibility of our scheme for remote preparation arbitrary multi-qubit equatorial states is explicitly demonstrated by theoretical studies and concrete examples.  相似文献   

12.
We employ the conditional version of sandwiched Tsallis relative entropy to determine \(1:N-1\) separability range in the noisy one-parameter families of pseudopure and Werner-like N-qubit W, GHZ states. The range of the noisy parameter, for which the conditional sandwiched Tsallis relative entropy is positive, reveals perfect agreement with the necessary and sufficient criteria for separability in the \(1:N-1\) partition of these one parameter noisy states.  相似文献   

13.
We develop a generalized teleportation scheme based on quantum walks with two coins. For an unknown qubit state, we use two-step quantum walks on the line and quantum walks on the cycle with four vertices for teleportation. For any d-dimensional states, quantum walks on complete graphs and quantum walks on d-regular graphs can be used for implementing teleportation. Compared with existing d-dimensional states teleportation, prior entangled state is not required and the necessary maximal entanglement resource is generated by the first step of quantum walk. Moreover, two projective measurements with d elements are needed by quantum walks on the complete graph, rather than one joint measurement with \(d^2\) basis states. Quantum walks have many applications in quantum computation and quantum simulations. This is the first scheme of realizing communicating protocol with quantum walks, thus opening wider applications.  相似文献   

14.
Entanglement criteria for multipartite entangled states are obtained by matching witnesses to multipartite entangled states. The necessary and sufficient criterion of separability for three qubit X states is given as an example to illustrate the procedure of finding a criterion. The result is utilized to obtain the noise tolerance of W state. The necessary and sufficient criteria of three partite separability and full separability for four qubit noisy cluster states, three partite separability for four qubit noisy GHZ states are obtained.  相似文献   

15.
We propose a scheme of cyclic quantum teleportation for three unknown qubits using six-qubit maximally entangled state as the quantum channel. Suppose there are three observers Alice, Bob and Charlie, each of them has been given a quantum system such as a photon or spin-\(\frac{1}{2}\) particle, prepared in state unknown to them. We show how to implement the cyclic quantum teleportation where Alice can transfer her single-qubit state of qubit a to Bob, Bob can transfer his single-qubit state of qubit b to Charlie and Charlie can also transfer his single-qubit state of qubit c to Alice. We can also implement the cyclic quantum teleportation with \(N\geqslant 3\) observers by constructing a 2N-qubit maximally entangled state as the quantum channel. By changing the quantum channel, we can change the direction of teleportation. Therefore, our scheme can realize teleportation in quantum information networks with N observers in different directions, and the security of our scheme is also investigated at the end of the paper.  相似文献   

16.
A feasible, secure and collusion attack-free quantum sealed-bid auction protocol is proposed using a modified scheme for multiparty circular quantum key agreement. In the proposed protocol, the set of all (n) bidders is grouped into l subsets (sub-circles) in such a way that only the initiator (who prepares the quantum state to be distributed for a particular round of communication and acts as the receiver in that round) is a member of all the subsets (sub-circles) prepared for a particular round, while any other bidder is part of only a single subset. All n bidders and auctioneer initiate one round of communication, and each of them prepares l copies of a \(\left( r-1\right) \)-partite entangled state (one for each sub-circle), where \(r=\frac{n}{l}+1\). The efficiency and security of the proposed protocol are critically analyzed. It is shown that the proposed protocol is free from the collusion attacks that are possible on the existing schemes of quantum sealed-bid auction. Further, it is observed that the security against collusion attack increases with the increase in l, but that reduces the complexity (number of entangled qubits in each entangled state) of the entangled states to be used and that makes the scheme scalable and implementable with the available technologies. The additional security and scalability are shown to arise due to the use of a circular structure in place of a complete-graph or tree-type structure used earlier.  相似文献   

17.
In this paper, we present an efficient scheme for remote state preparation of arbitrary n-qubit states with real coefficients. Quantum channel is composed of n maximally two-qubit entangled states, and several appropriate mutually orthogonal bases including the real parameters of prepared states are delicately constructed without the introduction of auxiliary particles. It is noted that the successful probability is 100% by using our proposal under the condition that the parameters of prepared states are all real. Compared to general states, the probability of our protocol is improved at the cost of the information reduction in the transmitted state.  相似文献   

18.
An efficient method is proposed for the generation and swapping of multi-qubit entangled state in an array of linearly coupled superconducting resonators, each of which is coupled to N superconducting qubits. With the external driving fields to adjust the desired qubit–resonator interaction, we firstly show that the multipartite entangled state of superconducting qubits hosted in two nearest-neighbor interacting resonators can be deterministically realized. Furthermore, by utilizing the produced entangled state, we put forward a protocol for the swapping of quantum entangled state in the coupled resonator array based on measurement, i.e., the multi-particle entangled state can be achieved for the qubits in long-distance separated resonators. The numerical simulation suggests that our scheme is feasible with current circuit QED technology.  相似文献   

19.
The restoration of three-qubit entanglement is investigated under the amplitude damping (AD) decoherence with environment-assisted measurement (EAM) and reversal weak measurement (RWM). The results show that there exists a critical strength of RWM dependent of the initial three-qubit entangled state under a given damping rate of the AD channel, i.e., if the selected RWM strength is higher than the critical strength, the entanglement will be reduced compared to one without RWM. Some three-qubit entangled states cannot be restored. We calculated the restorable condition of the initial entanglement and illustrated the valid area for three-qubit GHZ state and W state. Fortunately, an optimal strength of RWM corresponding to a certain damping rate of AD channels can be found within the valid area for a restorable initial state, by which a noise-infected entanglement can be restored to its maximum value. Particularly, when three qubits of W state are subjected to their respective AD channels, due to the symmetry of three qubits, the W state cannot be decohered provided the EAM is successful, and no RWM is required. This is beneficial to quantum communication over the noisy channel. Applying this protection regime to tripartite QSS and taking appropriate initial entangled state as the quantum channel, the fidelity of the shared state can be improved to the maximum 1 probabilistically. Thus, the decoherence effect of the noisy channels can be significantly suppressed or even avoided.  相似文献   

20.
We propose a scheme of cyclic joint remote state preparation for three sides, which takes advantage of three GHZ states to compose product state as quantum channel. Suppose there are six legitimate participants, says Alice, Bob, Charlie, David, Emma and Fred in the scheme. It can be shown that Alice and David can remotely prepare a single-qubit state on Bob’s side; meanwhile, Bob and Emma can remotely prepare a desired quantum state on Charlie’s side, and Charlie and Fred can also remotely prepare a single-qubit state on Alice’s side at the same time. Further, it can be achieved in the opposite direction of the cycle by changing the quantum channel. Based on it, we generalize this protocol to \(N (N\ge 3)\) sides utilizing three multi-qubit GHZ-type states as quantum channel. Therefore, the scheme can achieve cyclic joint remote state preparation, which remotely prepares N states in quantum network with N-party, simultaneously. In addition, we consider that the effect of amplitude-damping noise of the initial states is prepared in four different laboratory. Clearly, we use fidelity to describe how much information has been lost in the cyclic process. Our investigation about the effect of noise shows that the preparing of the initial state in different laboratories will affect the loss of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号