首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对不同干扰和噪声情况下的量子状态估计和滤波问题,分别提出相应的高效量子状态密度矩阵重构凸优化算法.对于稀疏状态干扰和测量噪声同时存在的情况,提出量子状态滤波算法.对分别存在稀疏状态干扰和测量噪声的情况,提出相应两种不同的量子状态估计算法.在5量子位的状态密度矩阵估计仿真实验中分析不同采样率下的3种算法性能.实验表明,3种算法均具有较低的计算复杂度、较快的收敛速度和较低的估计误差.  相似文献   

2.
In this paper, an improved adaptive weights alternating direction method of multipliers algorithm is developed to implement the optimization scheme for recovering the quantum state in nearly pure states. The proposed approach is superior to many existing methods because it exploits the low-rank property of density matrices, and it can deal with unexpected sparse outliers as well. The numerical experiments are provided to verify our statements by comparing the results to three different optimization algorithms, using both adaptive and fixed weights in the algorithm, in the cases of with and without external noise, respectively. The results indicate that the improved algorithm has better performances in both estimation accuracy and robustness to external noise. The further simulation results show that the successful recovery rate increases when more qubits are estimated, which in fact satisfies the compressive sensing theory and makes the proposed approach more promising.  相似文献   

3.
设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing, LDAMP)的深度学习网络,将其应用于量子状态的估计.该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合,利用量子系统输出的测量值作为网络输入,通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵,从大量的训练样本中提取各种不同类型密度矩阵的结构特征,来实现对量子本征态、叠加态以及混合态的估计.在对4个量子位的量子态估计的具体实例中,分别在无和有测量噪声干扰情况下,对基于LDAMP网络的量子态估计进行了仿真实验性能研究,并与基于压缩感知的交替方向乘子法和三维块匹配近似消息传递等算法进行估计性能对比研究.数值仿真实验结果表明,所设计的LDAMP网络可以在较少的测量的采样率下,同时完成对4种量子态的更高精度估计.  相似文献   

4.
目的 利用低秩矩阵恢复方法可从稀疏噪声污染的数据矩阵中提取出对齐且线性相关低秩图像的优点,提出一种新的基于低秩矩阵恢复理论的多曝光高动态范围(HDR)图像融合的方法,以提高HDR图像融合技术的抗噪声与去伪影的性能。方法 以部分奇异值(PSSV)作为优化目标函数,可构建通用的多曝光低动态范围(LDR)图像序列的HDR图像融合低秩数学模型。然后利用精确增广拉格朗日乘子法,求解输入的多曝光LDR图像序列的低秩矩阵,并借助交替方向乘子法对求解算法进行优化,对不同的奇异值设置自适应的惩罚因子,使得最优解尽量集中在最大奇异值的空间,从而得到对齐无噪声的场景完整光照信息,即HDR图像。结果 本文求解方法具有较好的收敛性,抗噪性能优于鲁棒主成分分析(RPCA)与PSSV方法,且能适用于多曝光LDR图像数据集较少的场合。通过对经典的Memorial Church与Arch多曝光LDR图像序列的HDR图像融合仿真结果表明,本文方法对噪声与伪影的抑制效果较为明显,图像细节丰富,基于感知一致性(PU)映射的峰值信噪比(PSNR)与结构相似度(SSIM)指标均优于对比方法:对于无噪声的Memorial Church图像序列,RPCA方法的PSNR、SSIM值分别为28.117 dB与0.935,而PSSV方法的分别为30.557 dB与0.959,本文方法的分别为32.550 dB与0.968。当为该图像序列添加均匀噪声后,RPCA方法的PSNR、SSIM值为28.115 dB与0.935,而PSSV方法的分别为30.579 dB与0.959,本文方法的为32.562 dB与0.967。结论 本文方法将多曝光HDR图像融合问题与低秩最优化理论结合,不仅可以在较少的数据量情况下以较低重构误差获取到HDR图像,还能有效去除动态场景伪影与噪声的干扰,提高融合图像的质量,具有更好的鲁棒性,适用于需要记录场景真实光线变化的场合。  相似文献   

5.
An ensemble of quantum states can be described by a Hermitian, positive semidefinite and unit trace matrix called density matrix. Thus, the study of methods for optimizing a certain function (energy, entropy) over the set of density matrices has a direct application to important problems in quantum information and computation. We propose a projected gradient method for solving such problems. By exploiting the geometry of the feasible set, which is the intersection of the cone of Hermitian positive semidefinite matrices with the hyperplane defined by the unit trace constraint, we describe an efficient procedure to compute the projection onto this set using the Frobenius norm. Some important applications, such as quantum state tomography, are described and numerical experiments illustrate the effectiveness of the method when compared to previous methods based on fixed-point iterations or semidefinite programming.  相似文献   

6.
Constrained clustering methods (that usually use must-link and/or cannot-link constraints) have been received much attention in the last decade. Recently, kernel adaptation or kernel learning has been considered as a powerful approach for constrained clustering. However, these methods usually either allow only special forms of kernels or learn non-parametric kernel matrices and scale very poorly. Therefore, they either learn a metric that has low flexibility or are applicable only on small data sets due to their high computational complexity. In this paper, we propose a more efficient non-linear metric learning method that learns a low-rank kernel matrix from must-link and cannot-link constraints and the topological structure of data. We formulate the proposed method as a trace ratio optimization problem and learn appropriate distance metrics through finding optimal low-rank kernel matrices. We solve the proposed optimization problem much more efficiently than SDP solvers. Additionally, we show that the spectral clustering methods can be considered as a special form of low-rank kernel learning methods. Extensive experiments have demonstrated the superiority of the proposed method compared to recently introduced kernel learning methods.  相似文献   

7.
Fu-Rong Lin  Hai-Xia Yang 《Calcolo》2013,50(4):313-327
A jump-diffusion model for the pricing of options leads to a partial integro-differential equation (PIDE). Discretizing the PIDE by certain method, we get a sequence of systems of linear equations, where the coefficient matrices are Toeplitz matrices. In this paper, we decompose the coefficient matrix as the sum of a tridiagonal matrix and a near low-rank matrix, and approximate the near low-rank matrix by low-rank matrices. Then we introduce a stationary iterative method for the approximate systems of linear equations. Comparison of the performance of our algorithm to that proposed in Pang et al. (Linear Algebra Appl. 434:2325–2342, 2011) is presented.  相似文献   

8.
In this paper, we propose two accelerated algorithms for the low-rank approximate method in Wang et al. (0000) for matrix completion. The main idea is to use the successive over-relaxation technique. Based on the successive over-relaxation method for the feasible matrices or projection matrices, the low-rank matrix approximate method is modified and accelerated. Meanwhile, we discuss the convergence of the over-relaxation algorithm for the feasible matrix. Finally, the numerical experiments show them to be effective.  相似文献   

9.

In this paper, we propose a novel and robust fabric defect detection method based on the low-rank representation (LRR) technique. Due to the repeated texture structure we model a defects-free fabric image as a low-rank structure. In addition, because defects, if exist, change only the texture of fabric locally, we model them with a sparse structure. Based on the above idea, we represent a fabric image into the sum of a low-rank matrix which expresses fabric texture and a sparse matrix which expresses defects. Then, the LRR method is applied to obtain the corresponding decomposition. Especially, in order to make better use of low-rank structure characteristics we propose LRREB (low-rank representation based on eigenvalue decomposition and blocked matrix) method to improve LRR. LRREB is implemented by dividing a image into some corresponding blocked matrices to reduce dimensions and applying eigen-value decomposition (EVD) on blocked matrix instead of singular value decomposition (SVD) on original fabric image, which improves the accuracy and efficiency. No training samples are required in our methods. Experimental results show that the proposed fabric defect detection method is feasible, effective, and simple to be employed.

  相似文献   

10.
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a “loss of purity” until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.  相似文献   

11.
为提高非均匀噪声下波达方向(direction of arrival,DOA)角估计算法的估计精度和分辨率,基于低秩矩阵恢复理论,提出了一种二阶统计量域下的加权L1稀疏重构DOA估计算法。该算法基于低秩矩阵恢复方法,引入弹性正则化因子将接收信号协方差矩阵重构问题转换为可获得高效求解的半定规划(semidefinite programming,SDP)问题以重构无噪声协方差矩阵;而后在二阶统计量域下利用稀疏重构加权L1范数实现DOA参数估计。数值仿真表明,与传统MUSIC、L1-SVD及加权L1算法相比,所提算法能显著抑制非均匀噪声影响,具有较好的DOA参数估计性能,且在低信噪比条件下,所提算法具有较高的角度分辨力和估计精度。  相似文献   

12.
In the present article we introduce and validate an approach for single-label multi-class document categorization based on text content features. The introduced approach uses the statistical property of Principal Component Analysis, which minimizes the reconstruction error of the training documents used to compute a low-rank category transformation matrix. Such matrix transforms the original set of training documents from a given category to a new low-rank space and then optimally reconstructs them to the original space with a minimum reconstruction error. The proposed method, called Minimizer of the Reconstruction Error (mRE) classifier, uses this property, and extends and applies it to new unseen test documents. Several experiments on four multi-class datasets for text categorization are conducted in order to test the stable and generally better performance of the proposed approach in comparison with other popular classification methods.  相似文献   

13.
杨靖北  丛爽  陈鼎 《控制理论与应用》2017,34(11):1514-1521
量子状态层析所需要的完备观测次数d~2(d=2~n)随着状态的量子位数n的增加呈指数增长,这使得对高维量子态的层析变得十分困难.本文提出一种基于两步测量的量子态估计方法,可以对任意量子纯态的估计提供最少的观测次数.本文证明:当选择泡利观测算符,采用本文所提出的量子态估计方法对d=2n维希尔伯特空间中的任意n量子位纯态进行重构时,如果为本征态,那么所需最少观测次数memin仅为memin=n;对于包含l(2 6 l 6 d)个非零本征值的叠加态,重构所需最少观测次数msmin满足msmin=d+2l..3,此数目远小于压缩传感理论给出的量子态重构所需测量配置数目O(rd log d),以及目前已发表论文给出的纯态唯一确定所需最少观测次数4d..5.同时给出最少观测次数对应的最优观测算符集的构建方案,并通过仿真实验对本文所提出的量子态估计方法进行验证,实验中重构保真度均达到97%以上.  相似文献   

14.
Low-rank matrix approximation is used in many applications of computer vision, and is frequently implemented by singular value decomposition under L2-norm sense. To resist outliers and handle matrix with missing entries, a few methods have been proposed for low-rank matrix approximation in L1 norm. However, the methods suffer from computational efficiency or optimization capability. Thus, in this paper we propose a solution using dynamic system to perform low-rank approximation under L1-norm sense. From the state vector of the system, two low-rank matrices are distilled, and the product of the two low-rank matrices approximates to the given measurement matrix with missing entries, in L1 norm. With the evolution of the system, the approximation accuracy improves step by step. The system involves a parameter, whose influences on the computational time and the final optimized two low-rank matrices are theoretically studied and experimentally valuated. The efficiency and approximation accuracy of the proposed algorithm are demonstrated by a large number of numerical tests on synthetic data and by two real datasets. Compared with state-of-the-art algorithms, the newly proposed one is competitive.  相似文献   

15.
针对人脸图像不完备的问题和人脸图像在不同视角、光照和噪声下所造成训练样本污损的问题,提出了一种快速的人脸识别算法--RPCA_CRC。首先,将人脸训练样本对应的矩阵D0分解为类间低秩矩阵D和稀疏误差矩阵E;其次,以低秩矩阵D为基础,得到测试样本的协同表征;最后,通过重构误差进行分类。相对于基于稀疏表征的分类(SRC)方法,所提算法运行速度平均提高25倍;且在训练样本数不完备的情况下,识别率平均提升30%。实验证明该算法快速有效,识别率高。  相似文献   

16.
Low-rank matrix approximation has applications in many fields, such as 3D reconstruction from an image sequence and 2D filter design. In this paper, one issue with low-rank matrix approximation is re-investigated: the missing data problem. Much effort was devoted to this problem, and the Wiberg algorithm or the damped Newton algorithm were recommended in previous studies. However, the Wiberg or damped Newton algorithms do not suit for large (especially “long”) matrices, because one needs to solve a large linear system in every iteration. In this paper, we revitalize the usage of the Levenberg-Marquardt algorithm for solving the missing data problem, by utilizing the property that low-rank approximation is a minimization problem on subspaces. In two proposed implementations of the Levenberg-Marquardt algorithm, one only needs to solve a much smaller linear system in every iteration, especially for “long” matrices. Simulations and experiments on real data show the superiority of the proposed algorithms. Though the proposed algorithms achieve a high success rate in estimating the optimal solution by random initialization, as illustrated by real examples; it still remains an open issue how to properly do the initialization in a severe situation (that is, a large amount of data is missing and with high-level noise).  相似文献   

17.
Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is applied to reconstruction of residual measurements after the detection and identification scheme based on the Markov graph of the system state, which increases the resilience of state estimation strategy against deception attacks. First, the observability analysis is introduced to decide the triggering time of the measurement reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over completed dictionary by K singular value decomposition (K SVD), which is produced adaptively according to the characteristics of the measurement data. In addition, due to the irregularity of residual measurements, a sampling matrix is designed as the measurement matrix. Finally, the simulation experiments are performed on 6 bus power system. Results show that the reconstruction of measurements is completed well by the proposed reconstruction method, and the corresponding effects are better than reconstruction scheme based on the joint dictionary and the traditional Gauss or Bernoulli random matrix respectively. Especially, when only 29% available clean measurements are left, performance of the proposed strategy is still extraordinary, which reflects generality for five kinds of recovery algorithms.  相似文献   

18.
唐雅茹  丛爽  杨靖北 《自动化学报》2020,46(8):1592-1599
针对具有退相干效应与测量反馈随机噪声的随机开放量子系统, 采用对状态影响较弱的连续弱测量在线获取一系列状态的部分信息, 实现量子状态的在线估计.由泡利矩阵构造初始测量算符, 并推导出在线的随时间变化的测量算符; 基于压缩传感理论来减少测量次数; 采用最小二乘优化算法对自由演化中的量子密度矩阵状态进行重构, 完整地给出了量子态在线估计的过程.所提出的在线量子态估计方案, 在一个量子位系统上进行了系统仿真实验.数值仿真实验结果表明, 在满足压缩传感理论的条件下, 仅需2次连续弱测量所得到的测量值之后, 就可以高精度地实现在线变化的单比特量子密度矩阵估计.  相似文献   

19.
We propose a recovery approach for highly subsampled dynamic parallel MRI image without auto-calibration signals (ACSs) or prior knowledge of coil sensitivity maps. By exploiting the between-frame redundancy of dynamic parallel MRI data, we first introduce a new low-rank matrix recovery-based model, termed as calibration using spatial–temporal matrix (CUSTOM), for ACSs recovery. The recovered ACSs from data are used for estimating coil sensitivity maps and further dynamic image reconstruction. The proposed non-convex and non-smooth minimization for the CUSTOM step is solved by a proximal alternating linearized minimization method, and we provide its convergence result for this specific minimization problem. Numerical experiments on several highly subsampled test data demonstrate that the proposed overall approach outperforms other state-of-the-art methods for calibrationless dynamic parallel MRI reconstruction.  相似文献   

20.
Three-dimensional motion estimation from multiview video sequences is of vital importance to achieve high-quality dynamic scene reconstruction. In this paper, we propose a new 3-D motion estimation method based on matrix completion. Taking a reconstructed 3-D mesh as the underlying scene representation, this method automatically estimates motions of 3-D objects. A "separating + merging" framework is introduced to multiview 3-D motion estimation. In the separating step, initial motions are first estimated for each view with a neighboring view. Then, in the merging step, the motions obtained by each view are merged together and optimized by low-rank matrix completion method. The most accurate motion estimation for each vertex in the recovered matrix is further selected by three spatiotemporal criteria. Experimental results on data sets with synthetic motions and real motions show that our method can reliably estimate 3-D motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号