首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new communication mode, quantum simultaneous secret distribution (QSSD) is put forward, where one sender distributes different classical secret message to multiparty receivers simultaneously. Based on the properties of the one-dimensional four-qubit cluster states, a three-party QSSD protocol is proposed, and then it is extended to the case that there are many receivers. Owing to the idea of quantum dense coding, each receiver can receive two bits of classical message by the sender only using a cluster state. In order to check security of quantum channels, a strategy which can prevent common attacks efficiently is put forward. QSSD is distinct from quantum secret sharing (QSS) and quantum broadcast communication (QBC), but it can be easily converted into QSS and QBC. QSSD is also different from the multiple-QKD communication mode where the sender shares a private key with each receiver at first, while in QSSD the sender doesn’t; in addition, only one round of one-to-many communication is performed in QSSD, while in multiple-QKD communication mode many rounds of one-to-one communication are performed.  相似文献   

2.
The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon’s classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion and thus completely characterize the convergence toward the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.  相似文献   

3.
In this paper we propose two schemes for teleportation of a sub-class of tripartite states, the first one with the four-qubit cluster state and the second one with two Bell pairs as entanglement channels. A four-qubit joint measurement in the first case and two Bell measurements in the second are performed by the sender. Appropriate unitary operations on the qubits at the receiver’s end along with an ancilla qubit result in the perfect teleportation of the tripartite state. Analysis of the quantum circuits employed in these schemes reveal that in our technique the desired quantum tasks are achieved with lesser quantum cost, gate count and classical communication bits compared with other similar schemes.  相似文献   

4.
Subliminal signature schemes enable senders to hide subliminal messages in a digital signature such that no one besides the authorised subliminal message receiver (called designated receiver) can extract subliminal messages from that signature. This paper is the first to construct subliminal channels on the identity-based threshold ring signature scheme. Two types of subliminal channels are proposed. The first is the unknown-sender subliminal channel, wherein the sender is anonymously sending the subliminal message through an identity-based threshold ring signature. Although the designated receiver can extract the subliminal message and confirm that it is from the known ring of signers, he/she cannot identify the real sender. The other proposed subliminal channel is the known-sender subliminal channel in which the designated receiver can identify the actual sender. Furthermore, the proposed unknown-sender subliminal channel can be extended to permit the sender to send multiple subliminal messages to multiple designated receivers via a single threshold ring signature.  相似文献   

5.
Quantum teleportation of an unknown quantum state is one of the few communication tasks which has no classical counterpart. Usually the aim of teleportation is to send an unknown quantum state to a receiver. But is it possible in some way that the receiver’s state has more quantum discord than the sender’s state? We look at a scenario where Alice and Bob share a pure quantum state and Alice has an unknown quantum state. She performs joint measurement on her qubits and channel to prepare Bob’s qubits in a mixed state which has higher quantum discord than hers. We also observe an interesting feature in this scenario, when the quantum discord of Alice’s qubits increases, then the quantum discord of Bob’s prepared qubits decreases. Furthermore, we show that the fidelity of one-qubit quantum teleportation using Bob’s prepared qubits as the channel is higher than using Alice’s qubits.  相似文献   

6.
Bennett et al. showed that allowing shared entanglement between a sender and receiver before communication begins dramatically simplifies the theory of quantum channels, and these results suggest that it would be worthwhile to study other scenarios for entanglement-assisted classical communication. In this vein, the present paper makes several contributions to the theory of entanglement-assisted classical communication. First, we rephrase the Giovannetti–Lloyd–Maccone sequential decoding argument as a more general “packing lemma” and show that it gives an alternate way of achieving the entanglement-assisted classical capacity. Next, we show that a similar sequential decoder can achieve the Hsieh–Devetak–Winter region for entanglement-assisted classical communication over a multiple access channel. Third, we prove the existence of a quantum simultaneous decoder for entanglement-assisted classical communication over a multiple access channel with two senders. This result implies a solution of the quantum simultaneous decoding conjecture for unassisted classical communication over quantum multiple access channels with two senders, but the three-sender case still remains open (Sen recently and independently solved this unassisted two-sender case with a different technique). We then leverage this result to recover the known regions for unassisted and assisted quantum communication over a quantum multiple access channel, though our proof exploits a coherent quantum simultaneous decoder. Finally, we determine an achievable rate region for communication over an entanglement-assisted bosonic multiple access channel and compare it with the Yen-Shapiro outer bound for unassisted communication over the same channel.  相似文献   

7.
量子态远程制备(RSP)是量子信息过程的一个重要分支。为了解决一个发送者向多个接收者同时制备相同量子态的问题,提出了基于广播机制的1对2三方量子态远程制备协议,并将其拓展到1对N多方量子态远程制备中。该协议使用GHZ态作为量子信道,通过构造两组特殊测量基,发送方进行两次多粒子投影测量,接收方根据测量结果进行幺正操作,最终实现1个发送者向多个接收者同时制备相同的粒子态。经分析,协议的这种广播制备模式可以适用于任意多个接收者的情形。  相似文献   

8.
We consider the problem of error control for receiver-driven layered multicast of audio and video over the Internet. The sender injects into the network multiple source layers and multiple channel coding (parity) layers, some of which are delayed relative to the source, Each receiver subscribes to the number of source layers and the number of parity layers that optimizes the receiver's quality for its available bandwidth and packet loss probability. We augment this layered FEC system with layered pseudo-ARQ. Although feedback is normally problematic in broadcast situations, ARQ can be simulated by having the receivers subscribe and unsubscribe to the delayed parity layers to receive missing information. This pseudo-ARQ scheme avoids an implosion of repeat requests at the sender and is scalable to an unlimited number of receivers, We show gains of 4-18 dB on channels with 20% loss over systems without error control and additional gains of 1-13 dB when FEC is augmented by pseudo-ARQ in a hybrid system, Optimal error control in the hybrid system is achieved by an optimal policy for a Markov decision process  相似文献   

9.
Collins and Popescu realized a powerful analogy between several resources in classical and quantum information theory. The Collins?CPopescu analogy states that public classical communication, private classical communication, and secret key interact with one another somewhat similarly to the way that classical communication, quantum communication, and entanglement interact. This paper discusses the information-theoretic treatment of this analogy for the case of noisy quantum channels. We determine a capacity region for a quantum channel interacting with the noiseless resources of public classical communication, private classical communication, and secret key. We then compare this region with the classical-quantum-entanglement region from our prior efforts and explicitly observe the information-theoretic consequences of the strong correlations in entanglement and the lack of a super-dense coding protocol in the public-private-secret-key setting. The region simplifies for several realistic, physically-motivated channels such as entanglement-breaking channels, Hadamard channels, and quantum erasure channels, and we are able to compute and plot the region for several examples of these channels.  相似文献   

10.
A quantum channel physically is a unitary interaction between an information carrying system and an environment, which is initialized in a pure state before the interaction. Conventionally, this state, as also the parameters of the interaction, is assumed to be fixed and known to the sender and receiver. Here, following the model introduced by us earlier [1], we consider a benevolent third party, i.e., a helper, controlling the environment state, and show how the helper’s presence changes the communication game. In particular, we define and study the classical capacity of a unitary interaction with helper, in two variants: one where the helper can only prepare separable states across many channel uses, and one without this restriction. Furthermore, two even more powerful scenarios of pre-shared entanglement between helper and receiver, and of classical communication between sender and helper (making them conferencing encoders) are considered.  相似文献   

11.
We propose two controlled quantum secure communication schemes by entanglement distillation or generalized measurement. The sender Alice, the receiver Bob and the controllers David and Cliff take part in the whole schemes. The supervisors David and Cliff can control the information transmitted from Alice to Bob by adjusting the local measurement angles \(\theta _4\) and \(\theta _3\). Bob can verify his secret information by classical one-way function after communication. The average amount of information is analyzed and compared for these two methods by MATLAB. The generalized measurement is a better scheme. Our schemes are secure against some well-known attacks because classical encryption and decoy states are used to ensure the security of the classical channel and the quantum channel.  相似文献   

12.
By exploiting the entanglement correlation in quantum mechanics, two three-party remote state preparation (RSP) schemes are proposed. One is three-party remote preparation of a single-particle quantum state, and the other is three-party remote preparation of a two-particle entangled state. In the proposed schemes, the sender Alice knows the quantum states to be prepared, while the receivers Bob and Charlie do not know the quantum states; Alice performs measurement and unitary operations on her own particles with two three-particle GHZ states as the quantum channel. According to Alice’s measurement results, Bob and Charlie measure their own particles on the corresponding quantum measurement bases and perform unitary operations on the corresponding particles to reconstruct the quantum states, respectively. Compared with multiparty joint remote preparation and two-party RSP of a quantum state, the proposed schemes realize quantum multicast communication successfully, which enables Bob and Charlie to obtain the prepared quantum states simultaneously in the case of just knowing Alice’s measurement results, while Bob and Charlie do not know each other’s prepared quantum states. It is shown that only three classical bits are required for the two proposed RSP schemes when Bob and Alice introduce an auxiliary particle, respectively, and the proposed schemes are secure after the quantum channel authentication.  相似文献   

13.
The main superiority of the quantum remote preparation over quantum teleportation lies the classical resource saving. This situation may be changed from the following constructions. Our purpose in this paper is to find some special differences between these two quantum tasks besides the classical resource costs. Some novel schemes show that the first one is useful to simultaneously broadcast arbitrary quantum states, while the second one cannot because of the quantum no-cloning theorem. Moreover, these broadcast schemes may be adapted to satisfying the different receivers’ requirements or distributing the classical information, which are important in various quantum applications such as the quantum secret distribution or the quantum network communication.  相似文献   

14.
In quantum key distribution, one conservatively assumes that the eavesdropper Eve is restricted only by physical laws, whereas the legitimate parties, namely the sender Alice and receiver Bob, are subject to realistic constraints, such as noise due to environment-induced decoherence. In practice, Eve too may be bound by the limits imposed by noise, which can give rise to the possibility that decoherence works to the advantage of the legitimate parties. A particular scenario of this type is one where Eve can’t replace the noisy communication channel with an ideal one, but her eavesdropping channel itself remains noiseless. Here, we point out such a situation, where the security of the ping–pong protocol (modified to a key distribution scheme) against a noise-restricted adversary improves under a non-unital noisy channel, but deteriorates under unital channels. This highlights the surprising fact that, contrary to the conventional expectation, noise can be helpful to quantum information processing. Furthermore, we point out that the measurement outcome data in the context of the non-unital channel can’t be simulated by classical noise locally added by the legitimate users.  相似文献   

15.
Employing a polarization-entangled \(\chi \) state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender’s analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender’s location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.  相似文献   

16.
为了简化多方量子秘密共享协议,利用Greenberger-Horne-Zeilinger(GHZ)态和互补基特性,提出了一种简单高效的多方量子秘密共享方案。该方案无需进行任何酉操作,发送方和多个接收方之间只需一次量子通信,并使用互补基进行测量即可完成信道安全检测和秘密共享。除去少量用于检测量子信道安全的粒子,其余每个GHZ态粒子共享一个比特的经典信息。安全性分析表明该方案是安全可靠的。  相似文献   

17.
彭家寅 《计算机应用研究》2020,37(12):3731-3735
为了解决任意二量子通信问题,首先给出了五粒子和七粒子纠缠态的构造方法,并提供了它们的量子线路图。其次,以该五粒子纠缠态为量子信道,提出一个任意二粒子未知量子态的受控隐形传态协议。该协议在监察者Charlie的控制下,Alice进行四粒子投影测量和经典通信,Bob采用简单酉变换就能以100%的概率成功重构一个任意二粒子纠缠态。最后,利用七粒子纠缠态为量子信道,提出了任意二粒子纠缠态的联合受控远程制备方案。在此方案中,发送者Alice用自己掌握被制备态的部分信息构造测量基,发送者Bob采用前馈测量策略,接收者Diana在监控者Charlie的帮助下,通过简单幺正变换就能确定性地恢复原始态。  相似文献   

18.
We first consider quantum communication protocols between a sender Alice and a receiver Bob, which transfer Alice’s quantum information to Bob by means of non-local resources, such as classical communication, quantum communication, and entanglement. In these protocols, we assume that Alice and Bob may have quantum side information, not transferred. In this work, these protocols are called the state transfer with quantum side information. We determine the optimal costs for non-local resources in the protocols and study what the effects of the use of quantum side information are. Our results can give new operational meanings to the quantum mutual information and the quantum conditional mutual information, which directly provide us with an operational interpretation of the chain rule for the quantum mutual information.  相似文献   

19.
We present a practical scheme for deterministically teleporting quantum information via probabilistic communication channels in a centralized quantum switch network. In the network, a central quantum switch agent is assigned for regulating probabilistic channels so as to construct a direct deterministic channel between the sender and the receiver. This scheme is further extended to a hierarchical network and a tree network involving multiple agents. The advantage of the scheme is that all required multi qubit gates from distributed terminal agents are uniformly performed by a central agent, with which the physical design of terminal nodes is greatly simplified and more reliable deterministic teleportation can be realized in a centralized quantum probabilistic network.  相似文献   

20.
This study proposes two new coding functions for GHZ states and GHZ-like states, respectively. Based on these coding functions, two fault tolerant authenticated quantum direct communication (AQDC) protocols are proposed. Each of which is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. Moreover, the proposed AQDC protocols enable a sender to send a secure as well as authenticated message to a receiver within only one step quantum transmission without using the classical channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号