首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-particle quantum state deterministic remote preparation is a fundamental and important technical branch in quantum communication. Since quantum noise is unavoidable in realistic quantum communication, it is important to analyze the effect of noise on multi-particle quantum communication protocols. In this paper, we study the effects of noise, such as amplitude damping, phase damping, bit-flip and depolarizing noises, on two deterministic remote preparation of an arbitrary three-particle state protocols, which are based on two different entangled channels, namely \(\chi \) state and Brown state. The detailed mathematical analysis shows that the output states of two deterministic remote state preparation (DRSP) protocols are the same in the same noisy environment. That is to say, in the same noisy environment, the effects of noise on two DRSP protocols are the same. This conclusion proves that these two DRSP protocols will produce the same arbitrary three-particle states in the same noise channel environment, and so that these protocols are inherently convergent and can be substituted for each other in certain circumstances. In addition, this paper also takes three-particle states \(a\left| {000} \right\rangle + b{\mathrm{e}^{ic}}\left| {111} \right\rangle \) as an example and studies the relationship between the fidelity, the target state and the size of the noise factor. The results show that if the target state can be selected, an appropriate target state can effectively resist on the bit-flip noise. If the target state cannot be selected, as the increase in the size of noise factor, the fidelities of the two DRSP schemes in the amplitude damping noise and phase damping noise are always larger than those in the bit-flip noise and depolarizing noise. This conclusion indicates that two protocols have better resistance on amplitude damping and phase damping noise than the bit-flip and depolarizing noises. These findings and analyses will provide valid help in deterministic remote preparation of an arbitrary three-particle state in a noisy environment.  相似文献   

2.
In this paper, several new protocols for the controlled remote state preparation (CRSP) by using the Brown state as the quantum channel are proposed. Firstly, we propose a CRSP protocol of an arbitrary two qubit state. Then, the CRSP protocol of an arbitrary three qubit state, which has rarely been considered by the previous papers, is investigated. The coefficients of the prepared states can be not only real, but also complex. To design these protocols, some useful and general measurement bases are constructed, which can greatly reduce the restrictions for the coefficients of the prepared states. The security analysis is provided in detail. Moreover, receiver??s all recovery operations are summarized into a concise formula.  相似文献   

3.
As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the \(\chi \) state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.  相似文献   

4.
The protocols for joint remote preparation of an arbitrary two-particle pure state from a spatially separated multi-sender to one receiver are presented in this paper. We first consider the situation of two sender and demonstrate a flexible deterministic joint remote state preparation compared with previous probabilistic schemes. And then generalize the protocol to multi-sender and show that by only adding some classical communication the success probability of preparation can be increased to four times. Finally, using a proper positive operator-valued measure instead of usual projective measurement, we present a new scheme via two non-maximally entangled states. It is shown that our schemes are generalizations of the usual standard joint remote state preparation scheme and more suitable for real experiments with requirements of only Pauli operations.  相似文献   

5.
We present several schemes for joint remote preparation of arbitrary two- and three-qubit entangled states with complex coefficients via two and three GHZ states as the quantum channel, respectively. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, some novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two senders (or N senders) collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubits, respectively, the receiver can reconstruct the original state by means of some appropriate unitary operations. The advantage of the present schemes is that the success probability in all the considered JRSP can reach 1.  相似文献   

6.
Two schemes via different entangled resources as the quantum channel are proposed to realize remote preparation of an arbitrary four-particle \(\chi \) -state with high success probabilities. To design these protocols, some useful and general measurement bases are constructed, which have no restrictions on the coefficients of the prepared states. It is shown that through a four-particle projective measurement and two-step three-particle projective measurement under the novel sets of mutually orthogonal basis vectors, the original state can be prepared with the probability 50 and 100 %, respectively. And for the first scheme, the special cases of the prepared state that the success probability reaches up to 100 % are discussed by the permutation group. Furthermore, the present schemes are extended to the non-maximally entangled quantum channel, and the classical communication costs are calculated.  相似文献   

7.
In this paper, we present a possible improvement of the successful probability of joint remote state preparation via cluster states following some ideals from probabilistic joint remote state preparation (Wang et al. in Opt Commun, 284:5835, 2011). The success probability can be improved from $1/4$ to 1 via the same quantum entangled channel by adding some classical information and performing some unitary operations. Moreover, we also discussed the scheme for joint remote preparation via cluster-type states. Compared with other schemes, our schemes have the advantage of having high successful probability for joint preparation of an arbitrary two-qubit state via cluster states and cluster-type states.  相似文献   

8.
Motivated by some previous joint remote preparation schemes, we first propose some quantum circuits and photon circuits that two senders jointly prepare an arbitrary one-qubit state to a remote receiver via GHZ state. Then, by constructing KAK decomposition of some transformation in SO(4), one quantum circuit is constructed for jointly preparing an arbitrary two-qubit state to the remote receiver. Furthermore, some deterministic schemes of jointly preparing one-qubit and two-qubit states are presented. Besides, the proposed schemes are extended to multi-sender and the partially entangled quantum resources.  相似文献   

9.
We propose two novel schemes for probabilistic remote preparation of an arbitrary quantum state with the aid of the introduction of auxiliary particles and appropriate local unitary operations. The first new proposal could be used to improve the total successful probability of the remote preparation of a general quantum state, and the successful probability is twice as much as the one of the preceding schemes. Meanwhile, one can make use of the second proposal to realize the remote state preparation when the information of the partially entangled state is only available for the sender. This is in contrast to the fact that the receiver must know the non-maximally entangled state in previous typical schemes. Hence, our second proposal could enlarge the applied range of probabilistic remote state preparation. Additionally, we will illustrate how to combine these novel proposals in detail, and our results show that the union has the advantages of both schemes. Of course, our protocols are implemented at the cost of the increased complexity of the practical realizations.  相似文献   

10.
利用三量子最大slice态作为量子信道,提出了单量子酉算子的受控远程执行的两个协议.首先,利用双向量子隐形传态(BQST),给出了一个任意单量子酉算子的受控隐形传输方案.结果 表明,通过非最大纠缠信道,发送者能够在遥远的接受者的量子系统上远程地执行一个任意单量子酉算子.如果发送者和控制者对各自量子执行恰当的投影测量,那...  相似文献   

11.
In this paper, we propose a novel scheme for asymmetric bidirectional controlled remote state preparation (ABCRSP) via a ten-qubit entangled state as the quantum channel. In this scheme, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to remotely prepare a single-qubit state at Bob’s site; at the same time, Bob wishes to help Alice remotely prepare an arbitrary four-qubit cluster-type entangled state. It is shown that only if the two senders and the controller collaborate with each other, the ABCRSP can be completed successfully. We demonstrate that the total success probability of the ABCRSP in this scheme can reach 1, that is, the scheme is deterministic.  相似文献   

12.
Quantum communication has attracted much attention in recent years. Deterministic joint remote state preparation (DJRSP) is an important branch of quantum secure communication which could securely transmit a quantum state with 100% success probability. In this paper, we study DJRSP of an arbitrary two-qubit state in noisy environment. Taking a GHZ based DJRSP scheme of a two-qubit state as an example, we study how the scheme is influenced by all types of noise usually encountered in real-world implementations of quantum communication protocols, i.e., the bit-flip, phase-flip (phase-damping), depolarizing, and amplitude-damping noise. We demonstrate that there are four different output states in the amplitude-damping noise, while there is the same output state in each of the other three types of noise. The state-independent average fidelity is presented to measure the effect of noise, and it is shown that the depolarizing noise has the worst effect on the DJRSP scheme, while the amplitude-damping noise or the phase-flip has the slightest effect depending on the noise rate. Our results are also suitable for JRSP and RSP.  相似文献   

13.
融合远程量子控制与双向受控隐形传态的思想,率先提出了受控双向远程控制(CBRQC)的一个概念。利用五量子纠缠,提出执行任意单量子算子对的两个CBRQC方案。这两个方案是概率的,而在第一个方案中,增加局域Pauli算子将导致该方案成功概率和内在效率都翻倍。对于双向传送算子的限制集,两个确定的方案被提出,其中一个总体优于其他方案,并且这两个方案的成功概率和效率都可大大提高。从量子及经典资源消耗、必要的操作复杂性、成功概率和内在效率五个方面对这些方案进行了比较,阐明了选择量子通道的原因,指出提出的方案是安全的,并说明了在现有技术的分析下该方案的实验可行性。  相似文献   

14.
In this work, we present a novel and efficient information-processing way, multiparty-controlled joint remote state preparation (MCJRSP), to transmit quantum information from many senders to one distant receiver via the control of many agents in a network. We firstly put forward a scheme regarding MCJRSP for an arbitrary single-particle state via Greenberg–Horne–Zeilinger entangled states, and then extend to generalize an arbitrary two-particle state scenario. Notably, different from conventional joint remote state preparation, the desired states cannot be recovered but all of agents collaborate together. Besides, both successful probability and classical information cost are worked out, the relations between success probability and the employed entanglement are revealed, the case of many-particle states is generalized briefly, and the experimental feasibility of our schemes is analysed via an all-optical framework at last. And we argue that our proposal might be of importance to long-distance communication in prospective quantum networks.  相似文献   

15.
In this paper, we proposed two controlled remote state preparation of an arbitrary single-qubit state schemes one for deterministic controlled remote state preparation the other for probabilistic controlled-joint remote state preparation with 2/3 probability. Both of them used the Affleck–Kennedy–Lieb–Tasaki (AKLT) state which consisted of bulk spin-1’s and two spin-1 \(/\) 2’s at the ends. Up to now, no RSP protocols using AKLT gapped ground states as a shared quantum resource had been presented thus far and Fan et al. showed the other AKLT property was that if we performed a Bell measurement on bulk, then a maximally entangled state would be shared by two ends. We utilized these properties to develop our controlled protocols.  相似文献   

16.
By exploiting the entanglement correlation in quantum mechanics, two three-party remote state preparation (RSP) schemes are proposed. One is three-party remote preparation of a single-particle quantum state, and the other is three-party remote preparation of a two-particle entangled state. In the proposed schemes, the sender Alice knows the quantum states to be prepared, while the receivers Bob and Charlie do not know the quantum states; Alice performs measurement and unitary operations on her own particles with two three-particle GHZ states as the quantum channel. According to Alice’s measurement results, Bob and Charlie measure their own particles on the corresponding quantum measurement bases and perform unitary operations on the corresponding particles to reconstruct the quantum states, respectively. Compared with multiparty joint remote preparation and two-party RSP of a quantum state, the proposed schemes realize quantum multicast communication successfully, which enables Bob and Charlie to obtain the prepared quantum states simultaneously in the case of just knowing Alice’s measurement results, while Bob and Charlie do not know each other’s prepared quantum states. It is shown that only three classical bits are required for the two proposed RSP schemes when Bob and Alice introduce an auxiliary particle, respectively, and the proposed schemes are secure after the quantum channel authentication.  相似文献   

17.
We propose a new scheme for efficient remote preparation of an arbitrary two-qubit state, introducing two auxiliary qubits and using two Einstein–Podolsky–Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with all existing schemes, our scheme accomplishes deterministic remote state preparation (RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We construct the corresponding quantum logic circuit using a unitary matrix decomposition procedure and analytically obtain the average fidelity of the deterministic RSP process for dissipative environments. Our studies show that, while the average fidelity gradually decreases to a stable value without any revival in the Markovian regime, it decreases to the same stable value with a dampened revival amplitude in the non-Markovian regime. We also find that the average fidelity’s approximate maximal value can be preserved for a long time if the non-Markovian and the detuning conditions are satisfied simultaneously.  相似文献   

18.
Zhang  Da  Zha  Xin-wei  Duan  Ya-jun  Yang  Yu-quan 《Quantum Information Processing》2016,15(5):2169-2179

In this paper, we presented a controlled bidirectional remote state preparation scheme which used the six-qubit entangled state as quantum channel. In our scheme, Alice and Bob can prepare simultaneously an arbitrary single-qubit state in each other’s place with the control of the supervisor Charlie. The success probability for our scheme reaches unit. Furthermore, we analyze the expression of quantum channel for controlled bidirectional remote state preparation. Finally, we discuss the security of our scheme, the detailed security analysis shows that the supervisor Charlie’s control can greatly improve the security of our scheme.

  相似文献   

19.
We propose an efficient nonlocal entanglement distribution protocol (EDP) to purify the two-photon polarization-entangled state, resorting to the projection measurement on the additional photons. With the help of the cross-Kerr nonlinearity, two remote parties can share two-photon maximally entangled polarization state from the arbitrary two-photon states with a certain success probability by iterating the entanglement purification process 6 times. Compared with conventional EDPs, the present one can obtain maximally entangled polarization state over an collective-noise channel with deterministic success probability. That is, the EDP is an optimal one.  相似文献   

20.
The usefulness of the recent experimentally realized six photon cluster state by C. Y. Lu et al. (Nature 3:91, 2007) is investigated for quantum communication protocols like quantum teleportation and quantum information splitting (QIS) and dense coding. We show that the present state can be used for the teleportation of an arbitrary two qubit state deterministically. Later, we devise two distinct protocols for the QIS of an arbitrary two qubit state among two parties. We construct sixteen orthogonal measurement basis on the cluster state, which will lock an arbitrary two qubit state among two parties. The capability of the state for dense coding is investigated and it is shown that one can send five classical bits by sending only three qubits using this state as a shared entangled resource. We finally show that this state can also be utilised in the remote state preparation of an arbitrary two qubit state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号